LatiA. 2024; 2:104 N d
doi: 10.62486/|atia2024104 Check for é =N 4
ISSN: 3046-403X updates Pa

ORIGINAL

Comparative Study of Al Code Generation Tools: Quality Assessment and
Performance Analysis

Estudio Comparativo de Herramientas de Generaciéon de Codigo por IA: Evaluacion
de Calidad y Analisis de Desempeiio

Michael Alexander Florez Muiioz' <, Juan Camilo Jaramillo De La Torre' <, Stefany Pareja Lopez' P4, Stiven
Herrera' U<, Christian Andrés Candela Uribe' <

"Universidad del Quindio. Colombia.

Cite as: Florez Munoz MA, Jaramillo De La Torre JC, Pareja Lopez S, Herrera S, Candela Uribe CA. Comparative Study of Al Code Generation
Tools: Quality Assessment and Performance Analysis. LatlA. 2024; 2:104. https://doi.org/10.62486/latia2024104

Submitted: 04-02-2024 Revised: 10-05-2024 Accepted: 15-08-2024 Publi: 16-08-2024

Editor: Prof. Dr. Javier Gonzalez Argote
ABSTRACT

Artificial intelligence (Al) code generation tools are crucial in software development, processing natural
language to improve programming efficiency. Their increasing integration in various industries highlights their
potential to transform the way programmers approach and execute software projects. The present research
was conducted with the purpose of determining the accuracy and quality of code generated by artificial
intelligence (Al) tools. The study began with a systematic mapping of the literature to identify applicable Al
tools. Databases such as ACM, Engineering Source, Academic Search Ultimate, IEEE Xplore and Scopus were
consulted, from which 621 papers were initially extracted. After applying inclusion criteria, such as English-
language papers in computing areas published between 2020 and 2024, 113 resources were selected. A further
screening process reduced this number to 44 papers, which identified 11 Al tools for code generation. The
method used was a comparative study in which ten programming exercises of varying levels of difficulty were
designed and the results obtained from 4 of them are presented. The identified tools generated code for
these exercises in different programming languages. The quality of the generated code was evaluated using
the SonarQube static analyzer, considering aspects such as safety, reliability and maintainability. The results
showed significant variations in code quality among the Al tools. Bing as a code generation tool showed slightly
superior performance compared to others, although none stood out as a noticeably superior Al. In conclusion,
the research evidenced that, although Al tools for code generation are promising, they still require a pilot to
reach their full potential, giving evidence that there is still a long way to go.

Keywords: Artificial Intelligence: Coding Assistants; Code Generation.
RESUMEN

Las herramientas de generacion de codigo con inteligencia artificial (IA) son cruciales en el desarrollo de
software, procesando lenguaje natural para mejorar la eficiencia en la programacion. Su creciente integracion
en diversas industrias destaca su potencial para transformar la manera en que los programadores abordan
y ejecutan proyectos de software. La presente investigacion se realizo con el proposito de determinar la
precision y calidad del cédigo generado por herramientas de inteligencia artificial (IA). El estudio comenzd
con un mapeo sistematico de la literatura para identificar las herramientas de IA aplicables. Se consultaron
bases de datos como ACM, Engineering Source, Academic Search Ultimate, IEEE Xplore y Scopus, de donde
se extrajeron inicialmente 621 articulos. Tras aplicar criterios de inclusion, como articulos en inglés de
areas de la computacion publicados entre 2020 y 2024, se seleccionaron 113 recursos. Un proceso de
tamizaje adicional redujo esta cifra a 44 articulos, que permitieron identificar 11 herramientas de IA para la
generacion de codigo. El método utilizado fue un estudio comparativo en el que se disenaron diez ejercicios

© 2024; Los autores. Este es un articulo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribucion y reproduccion en cualquier medio siempre que la obra original
sea correctamente citada

https://crossmark.crossref.org/dialog/?doi=10.62486/latia2024104
https://doi.org/10.62486/latia2024104
mailto:michaela.florezm@uqvirtual.edu.co?subject=
mailto:juanc.jaramillod@uqvirtual.edu.co?subject=
mailto:sparejal@uqvirtual.edu.co?subject=
mailto:stiven.herreras@uqvirtual.edu.co?subject=
mailto:christiancandela@uniquindio.edu.co?subject=
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.62486/latia2024104
https://orcid.org/0000-0003-0257-1176

LatlIA. 2024, 2:104 2

de programacion con diversos niveles de dificultad de los cuales se presentan los resultados obtenidos de 4
de ellos. Las herramientas identificadas generaron codigo para estos ejercicios en diferentes lenguajes de
programacion. La calidad del cédigo generado fue evaluada mediante el analizador estatico SonarQube,
considerando aspectos como seguridad, fiabilidad y mantenibilidad. Los resultados mostraron variaciones
significativas en la calidad del cddigo entre las herramientas de IA. Bing como herramienta de generacion
de cddigo mostré un rendimiento ligeramente superior en comparacion con otras, aunque ninguna destaco
como una |A notablemente superior. En conclusion, la investigacion evidencié que, aunque las herramientas
de IA para la generacion de coédigo son prometedoras, aln requieren de un piloto para alcanzar su maximo
potencial, dando a evidenciar que ain queda mucho por avanzar.

Palabras clave: Inteligencia Artificial; Asistentes de Codificacion; Generacion de Codigo.

INTRODUCTION

Artificial intelligence (Al) has experienced exponential development in recent decades, transforming virtually
every aspect of our lives (Finnie-Ansley et al., 2022; Lee, 2020). From virtual assistants to recommender systems,
Al has demonstrated its ability to process and analyze large amounts of data (Gruson, 2021; Ruiz Baquero, 2018),
identify complex patterns, and make informed decisions. Thus, it has become a fundamental tool in various fields
(Yadav & Pandey, 2020).

One of the most promising fields in which Al has a significant impact is the generation of functional and efficient
software code (Yan et al., 2023; Hernandez-Pinilla & Mendoza-Moreno, n.d). The importance of code generation
using Al lies in its ability to save time and effort (Marar, 2024; Koziolek et al., 2023) while speeding up the software
development process and reducing the possibility of human error (Chemnitz et al., 2023; Alvarado Rojas, 2015). In
addition, these tools can help understand and learn new programming languages, which is particularly useful for
novice developers (Llanos et al., 2021; De Giusti et al., 2023).

Code generation using Al involves using machine learning models and algorithms to create, modify, or improve
the source code of a computer program (Wolfschwenger et al., 2023).

(Wolfschwenger et al., 2023; Azaiz et al., 2023). This technology can potentially revolutionize software
development by speeding up the coding process, improving code quality, and facilitating collaboration between
developers (Pasquinelli et al., 2022; Tseng et al., 2023).

This study focuses on evaluating the accuracy and quality of code generated by 11 of the Al platforms. The
process includes code generation to solve ten tests with an incremental difficulty level. Subsequently, the resulting
codes are evaluated using static code analysis tools. The objective is to compare the performance of the platforms
and select the most representative and capable of generating functional and quality code.

This paper has the following sections: methods, results, conclusions, and bibliography.

METHOD
The research was carried out in four main phases: identification of artificial intelligences, code generation, code
evaluation and analysis of results.

Fase 1:

— S Fase 2: . Fase 3: ' Fase 4:
denif |cac$‘?tri1fiiea:2tsellgenmas _’ Generacion de codigo Evaluacién del cédigo Analisis de resultados

Figure 1. Phases of the process for the construction of the SMS

Phase 1: identification of Artificial Intelligences

The main objective of this phase is to define the artificial intelligence-based tools that will be used to perform
the code generation, therefore, a systematic mapping of the literature to identify artificial intelligence capable of
code generation (Macchi & Solari, 2012; Carrizo & Moller, 2018; Kitchenham et al., 2010). A search was conducted
in several databases, including ACM, Engineering Source, Academic Search Ultimate, IEEE Xplore, and Scopus,
resulting in 621 relevant scholarly articles and online resources. After applying inclusion criteria based on articles
and proceedings in English about the areas of engineering and computer science published between 2020 and 2024,
the total number of resources was reduced to 113. Then, a screening process was performed, resulting in 44 articles
of interest, which allowed the identification of the 11 artificial intelligences for code generation: CodeGPT, Replit,
Textsynth, Amazon CodeWhisperer, Bing, ChatGPT, Claude, Codeium, Gemini, GitHub Copilot and Tabnine.

https://doi.org/10.62486/latia2024104 ISSN: 3046-403X

https://doi.org/10.62486/latia2024104

3 Florez Munoz MA, et al

Phase 2: code generation

The objective of this phase is that the previously selected tools were tested, for which ten programming
exercises were designed with different difficulty levels, covering a wide range of tasks and concepts. The
seminar teacher elaborated on these exercises: Assistants for code generation. Subsequently, the 11 identified
code-generating tools were asked to solve these exercises in different programming languages, such as PHP,
Python, Java, JavaScript, TypeScript, C#, Kotlin, Go, and Ruby.

The exercises designed for evaluation include: 1. sort a set of elements, 2. search for an element within
a set, 3. count the occurrences of a specific element, 4. register users, 5. implement a REST API for user
management (CRUD), 6. Develop a GUI for this user management CRUD, 7. perform unit testing for the REST
API, 8. perform testing for the user management GUI, 9. implement a REST API for user management with token
validation, and 10. create a GUI for this protected CRUD.

Phase 3: code evaluation

The main objective of this phase is to determine the quality of the code generated by each of the tools in the
different languages, taking into account the effectiveness and reliability of each tool in terms of adherence to
good programming practices and code performance optimization. To carry out those mentioned above, a review
was performed by the students using a static code analyzer (Jenkins and SonarQube), which allowed different
tests to verify the quality of the code, taking into account aspects of security, reliability, and maintainability of
the code, in order to subsequently determine which artificial intelligence has higher quality when generating
code.

Phase 4: analysis of results

The main objective of this phase is to contrast the results obtained, that is, which are the most adequate
tools to generate quality and functional code. An analysis was generated considering all the information
obtained in the phase code evaluation.

RESULTS

This section details the results obtained in the different stages of the project development. Specific search
strings were designed for each selected database using the previously defined terms. This approach ensured
relevant coverage of the scope of the study.

Search Chains

To optimize the collection of relevant documents related to automatic code generation within the field
of artificial intelligence, specific search strings were developed for each database, adjusting according to
previously established terms (table 1).

Table 1. Search strings

Database Search string

Academic Search Ultimate TI ((“artificial intelligence” OR “intelligent systems” OR ai) AND (“code generation” OR
“automatic code creation” OR “automatic code development” OR “software autogeneration”
OR “code assistants” OR “code generator” OR “automatic coding”)) OR AB ((“artificial
intelligence” OR “intelligent systems” OR ai) AND (“code generation” OR “automatic code
creation” OR “automatic code development” OR “software autogeneration” OR “code
assistants” OR “code generator” OR “automatic coding”)) OR KW ((“artificial intelligence”
OR “intelligent systems” OR ai) AND (“code generation” OR “automatic code creation” OR
“automatic code development” OR “software autogeneration” OR “code assistants” OR
“code generator” OR “automatic coding”))

ACM [[[Title: “artificial intelligence”] OR [Title: “intelligent systems”] OR [Title: ai]] AND [[Title:
“code generation”] OR [Title: “automatic code creation”] OR [Title: “automatic code
development”] OR [Title: “software autogeneration”] OR [Title: “code assistants”] OR [Title:
“code generator”] OR [Title: “automatic coding”]]] OR [[[Abstract: “artificial intelligence”]
OR [Abstract: “intelligent systems”] OR [Abstract: ai]] AND [[Abstract: “code generation”]
OR [Abstract: “automatic code creation”] OR [Abstract: “automatic code development”] OR
[Abstract: “software autogeneration”] OR [Abstract: “code assistants”] OR [Abstract: “code
generator”] OR [Abstract: “automatic coding”]]] OR [[[Keywords: “artificial intelligence”] OR
[Keywords: “intelligent systems”] OR [Keywords: ai]] AND [[Keywords: “code generation”]
OR [Keywords: “automatic code creation”] OR [Keywords: “automatic code development”]
OR [Keywords: “software autogeneration”] OR [Keywords: “code assistants”] OR [Keywords:
“code generator”] OR [Keywords: “automatic coding”]]]

Engineering source TI ((“artificial intelligence” OR “intelligent systems” OR ai) AND (“code generation” OR
“automatic code creation” OR “automatic code development” OR “software autogeneration”

https://doi.org/10.62486/latia2024104 ISSN: 3046-403X

https://doi.org/10.62486/latia2024104

LatlA. 2024; 2:104 4

Prueba 01

Hotspots

GitHub Capilat

Reliability
Hotspots
Maintainability
Reliability
Hotspots
Maintainability
Reliability
Hotspots
Maintainability
Reliability
Hotspots

Codeium Gemini

Claude

Chat GPT

Reliability
Hotspots
Maintainability
Reliability
Hotspots
Maintainability
Reliability
Hotspots
Maintainability
Reliability
Hotspois

=2
o

FmazanCode
| | n
|||||| ‘_I ||‘I ‘I-‘-I :

Reliability
o 5 10 15 20] 30 35 40
JavaScript mRuby mTypeScript mGo mJava mPhp mC# m Python mKotlin

Figure 1. Test 01

https://doi.org/10.62486/latia2024104 ISSN: 3046-403X

https://doi.org/10.62486/latia2024104

5 Florez Munoz MA, et al

After executing the queries, 621 studies were obtained, of which 44 were finally selected.

The following results are from the most relevant tests of the different Al code-generating tools. This graph
shows the tools involved in the tests and their results when passed through the SonarQube tool that reviews
the source code statically.

This test 01 uses different artificial intelligences to generate the code to capture a person’s data, connect
to the database, create the table if it does not exist, and save the person’s data in the database.

In this evaluation, it is important to highlight that all the tools analyzed presented optimal performance in

programming languages such as Python, Go, and Ruby. Likewise, it was observed that the code analysis tool
offered more recommendations in languages such as Java, PHP, and C#.
On the other hand, it is worth noting that Codeium presented the lowest number of recommendations,
standing out among the other tools. However, for the test, which is relatively simple, there are quite a few
recommendations. In contrast, Amazon Code Whisperer was the tool that generated the highest number of
recommendations according to the analysis performed.

:P'ueba 02 I

GitHub Copilo
Chat GPT Caude Codeium Gemini Tabnine

Hing

Replit

CodeGPT

0) n a5, a0
ol u)) &l o =H e

JavaScript mRuby mTypeScrigt mGo mJave mPhp mC# mPython m Kotlin
Figure 2. Test 02

This test 02 uses different artificial intelligences to generate the code necessary to complete the CRUD
operations to manage users.

In this evaluation, it is important to highlight that all the tools analyzed presented optimal performance
in programming languages such as Ruby and TypeScript. Likewise, it was observed that the code analysis tool
offered more recommendations in languages such as Go, PHP, and C#.

On the other hand, it is worth noting that Bing presented the lowest number of recommendations,
standing out among the other tools. In contrast, Codeium was the tool that generated the highest number of
recommendations according to the analysis performed.

This test 03 uses different artificial intelligences to generate the appropriate code to test the functionalities
of the CRUD generated in past tests. In this evaluation, it is important to highlight that all the tools analyzed
presented an optimal performance in programming languages such as Ruby and TypeScript. Likewise, it was
observed that the code analysis tool offered more recommendations in languages such as Go, Java, Kotlin, and
PHP.

https://doi.org/10.62486/latia2024104 ISSN: 3046-403X

https://doi.org/10.62486/latia2024104

LatlA. 2024; 2:104 6

Prueba 03

- Hotspots
‘£ Mairtzinahiity
= L
= Reliability
3 Hotspots
S 5 Maintainability
= o
z Reliability
_ Hotspots e—
E Maintainability — m—
=3
= Reliability
= Hotspots —
= M inahility
s Mantainabilty — EE— ——
= . .
3 Reliability
Hotspots
=
S Maintainability
= . .
= Reliahility
— Hotspots
g Wzintzinakility
it Reliahility
Hotspots
E Maintaingbiity — n——
Reliability
Hotspots
EL Wiaintairabolity
Reliability
= Hotspots
S Maintainability
= . -
& Reliability
0 2 4 6 & 10 2 14 16 18 20
mRuby mTypeScript mGo mJava mPhp mPython mKotin
Figure 3. Test 03
Prueba 04
%] o] [+] o] [+] o] [+] [+] o]
2 Hotspols
=
S . Waintinabiity | —
=
% Refiabilty —
Hotspots
=
5 Maintainability | S
=
S Reliability
Hotspots
L]
S Mantsinzbiity I
0o
[a] L
Reliability | —
_ Hotspots
&= Maintainability |
o
5 Rediability
Hotspots |
2 Maintainability |
]
Reliability
Hotspots
=
‘e Maintainability |
6? . .
Relizbilty —
— Hotspols
[«
S Maintainabiity |
=
3 Reliability |
5] [s] o o o [s] o 5] o
0 i 4 6 b 10 12 i 6 18
mJavaScript mRuby mTypeScript mGo wmJava mPhp mPython m Kotlin

https://doi.org/10.62486/latia2024104

Figure 4. Test 04

ISSN: 3046-403X

https://doi.org/10.62486/latia2024104

7 Florez Munoz MA, et al

On the other hand, it is worth noting that Bing and Gemini presented the lowest number of recommendations,
standing out among the other tools. In contrast, Claude was the tool that generated the highest number of
recommendations according to the analysis performed.

This test 04 uses different artificial intelligences to generate the appropriate code to perform login and
route protection functionalities.

In this evaluation, it is important to highlight that all the tools analyzed presented optimal performance in
programming languages such as Ruby and Java. It was also observed that the code analysis tool offered more
recommendations in the PHP language.

On the other hand, it is worth noting that Bing presented the lowest number of recommendations,
standing out among the other tools. In contrast, CodeGPT was the tool that generated the highest number of
recommendations according to the analysis performed.

Finally, the total count of reports generated for each tool in the various tests performed is presented. This count
includes only the tools that participated in all tests, excluding Textsynth, Amazon CodeWhisperer, Gemini, and
Tabnine, which presented difficulties in generating functional code (table 3).

Table 3. Quality reports of the code generated for each tool

Reliability = Maintainability Hotspots Total
Replit 19 80 7 106
Bing 15 86 8 109
Claude 23 88 15 126
CodeGPT 14 110 12 136
Codeium 11 121 11 143
ChatGPT 10 160 8 178
GitHub Copilot 15 181 14 210

CONCLUSIONS

This paper presents the results of an SMS-type research focused on identifying the best Al tools to generate
functional and quality code. Studies in Spanish and English belonging to the areas of engineering and computer
science, published between 2020 and 2024, were considered. Through this study, it is evident that the various
artificial bits of intelligence evaluated still need to present a stable behavior regarding the quality and
functionality of the code they generate since the analysis results were not constant for any of the tools in the
ten tests performed. It was observed that most of the errors reported were related to the quality of the code,
in particular, characteristics that affect its maintainability.

According to the results obtained with this work, it stands out that the tool with the best performance in
generating functional and quality code was Replit, with 106 reports found. This result is based on the contrast
between the number of tests each Al used and the total number of errors reported by the static code analysis
tool (SonarQube). Likewise, it was observed that the GitHub Copilot tool presented the lowest performance
in the evaluation, with 210 reports found. Despite being one of the least problematic in generating functional
code, it presented quality failures in the analysis results.

During phase 3 of the study, the following incidents were identified: the Textsynth and Amazon CodeWhisperer
tools were discarded after the third and fourth tests due to problems with the usage plan and limitations in
the interaction with them. Although Gemini and Tabnine showed adequate behavior during the generation
and evaluation phases, they faced difficulties when generating functional code for one of the tests, which
prevented their integration into the results obtained with the other tools.

BIBLIOGRAPHIC REFERENCES
1. Alvarado Rojas, M. E. (2015). UNA MIRADA A LA INTELIGENCIA ARTIFICIAL.

2. Revista Ingenieria, Matematicas y Ciencias de La Informacion, 2(3). http://ojs.urepublicana.edu.co/
index.php/ingenieria/article/view/234

3. Azaiz, |., Deckarm, O., & Strickroth, S. (2023). Al-Enhanced Auto-Correction of Programming Exercises:
How Effective is GPT-3.57 International Journal of Engineering Pedagogy (IJEP), 13(8), 67-83. https://doi.
org/10.3991/ijep.v13i8.45621

4. Carrizo, D., & Moller, C. (2018). Estructuras metodoldgicas de revisiones sistematicas de literatura en
Ingenieria de Software: un estudio de mapeo sistematico. Ingeniare.

https://doi.org/10.62486/latia2024104 ISSN: 3046-403X

http://ojs.urepublicana.edu.co/index.php/ingenieria/article/view/234
http://ojs.urepublicana.edu.co/index.php/ingenieria/article/view/234
https://doi.org/10.3991/ijep.v13i8.45621
https://doi.org/10.3991/ijep.v13i8.45621
https://doi.org/10.62486/latia2024104

LatlA. 2024; 2:104 8
5. Revista Chilena de Ingenieria, 26,45-54. https://doi.org/10.4067/50718-33052018000500045

6. Chemnitz, L., Reichenbach, D., Aldebes, H., Naveed, M., Narasimhan, K., & Mezini, M. (2023). Towards
Code Generation from BDD Test Case Specifications: A Vision. 2023 IEEE/ACM 2nd International Conference on
Al Engineering - Software Engineering for Al (CAIN), 139-144. https://doi.org/10.1109/CAIN58948.2023.00031

7. De Giusti, L. C., Villarreal, G. L., Ibafez, E. J., & De Giusti, A. E. (2023). Aprendizaje y ensefanza de
programacion: El desafio de herramientas de Inteligencia Artificial como ChatGPT. Web

8. Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., & Prather, J. (2022). The Robots Are Coming:
Exploring the Implications of OpenAl Codex on Introductory Programming. Proceedings of the 24th Australasian
Computing Education Conference, 10-19. https://doi.org/10.1145/3511861.3511863

9. Gruson, D. (2021). Big Data, inteligencia artificial y medicina de laboratorio: la hora de la integracion.
Advances in Laboratory Medicine / Avances En Medicina de Laboratorio, 2(1), 5-7. https://doi.org/10.1515/
almed-2021-0014

10. Hernandez-Pinilla, D. V., & Mendoza-Moreno, J. F. (n.d.). La Inteligencia Artificial como una herramienta
para potenciar el desarrollo de software.

11. Kitchenham, B., Pretorius, R., Budgen, D., Brereton, Pearl., Turner, M., Niazi, M., & Linkman, S. (2010).
Systematic literature reviews in software engineering - A tertiary study. Information and Software Technology,
52(8), 792-805. https://doi.org/10.1016/j.infsof.2010.03.006

12. Koziolek, H., Gruener, S., & Ashiwal, V. (2023). ChatGPT for PLC/DCS Control Logic Generation. 2023
IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), 1-8. https://doi.
org/10.1109/ETFA54631.2023.10275411

13. Lee, R. S. T. (2020). Artificial Intelligence in Daily Life. Springer Singapore. https://doi.org/10.1007/978-
981-15-7695-9

14. Llanos Mosquera, J. M., Hidalgo Suarez, C. G., & Bucheli Guerrero, V. A. (2021). Una revision sistematica
sobre aula invertida y aprendizaje colaborativo apoyados en inteligencia artificial para el aprendizaje de
programacion. Tecnura, 25(69), 196-214. https://doi.org/10.14483/22487638.16934

15. Macchi, D., & Solari, M. (2012). Mapeo sistematico de la literatura sobre la Adopcion de Inspecciones de
Software.

16. Marar, H. W. (2024). Advancements in software engineering using Al. Computer Software and Media
Applications, 6(1), 3906. https://doi.org/10.24294/csma.v6i1.3906

17. Pasquinelli, M., Cafassi, E., Monti, C., Peckaitis, H., & Zarauza, G. (2022). Cébmo una maquina aprende
y falla - Una gramatica del error para la Inteligencia Artificial. Hipertextos, 10(17), 13-29. https://doi.
org/10.24215/23143924e054

18. Ruiz Baquero, P. E. (2018). Avances en inteligencia artificial y su impacto en la sociedad. https://
repository.upb.edu.co/handle/20.500.11912/4942

19. Tseng, A., Hahnemann, L., Humberto, M. E., Gaitan, P., Antonio, M., & Acosta, P. (2023). ChatGPT
desarrollando codigo fuente de software para historias de usuarios en una consultora, Lima, 2023. Repositorio
Institucional - UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/133838

20. Wolfschwenger, P., Sabitzer, B., & Lavicza, Z. (2023). Integrating Cloud-Based Al in Software Engineers’
Professional Training and Development. 2023 IEEE Frontiers in Education Conference (FIE), 1-5. https://doi.
org/10.1109/FIE58773.2023.10343391

21. Yadav, R. K., & Pandey, M. (2020). Artificial Intelligence and its Application in Various Fields. International
Journal of Engineering and Advanced Technology, 9(5), 1336-1339. https://doi.org/10.35940/ijeat.D9144.069520

https://doi.org/10.62486/latia2024104 ISSN: 3046-403X

https://doi.org/10.62486/latia2024104
https://doi.org/10.4067/S0718-33052018000500045
https://doi.org/10.1109/CAIN58948.2023.00031
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1515/almed-2021-0014
https://doi.org/10.1515/almed-2021-0014
https://doi.org/10.1016/j.infsof.2010.03.006
https://doi.org/10.1109/ETFA54631.2023.10275411
https://doi.org/10.1109/ETFA54631.2023.10275411
https://doi.org/10.1007/978-981-15-7695-9
https://doi.org/10.1007/978-981-15-7695-9
https://doi.org/10.14483/22487638.16934
https://doi.org/10.24294/csma.v6i1.3906
https://doi.org/10.24215/23143924e054
https://doi.org/10.24215/23143924e054
https://repository.upb.edu.co/handle/20.500.11912/4942
https://repository.upb.edu.co/handle/20.500.11912/4942
https://repositorio.ucv.edu.pe/handle/20.500.12692/133838
https://doi.org/10.1109/FIE58773.2023.10343391
https://doi.org/10.1109/FIE58773.2023.10343391
https://doi.org/10.35940/ijeat.D9144.069520

9 Florez Muhoz MA, et al

22. Yan, D., Gao, Z., & Liu, Z. (2023). A Closer Look at Different Difficulty Levels Code Generation Abilities of
ChatGPT. 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), 1887-1898.
https://doi.org/10.1109/ASE56229.2023.00096

FINANCING
The authors did not receive financing for the development of this research.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION

Conceptualization: Michael Alexander Florez Mufoz, Juan Camilo Jaramillo De La Torre, Stefany Pareja
Lopez, Stiven Herrera, Christian Andrés Candela Uribe.

Investigation: Michael Alexander Florez Muiioz, Juan Camilo Jaramillo De La Torre, Stefany Pareja Lopez,
Stiven Herrera, Christian Andrés Candela Uribe.

Methodology : Michael Alexander Florez Muioz, Juan Camilo Jaramillo De La Torre, Stefany Pareja Lopez,
Stiven Herrera, Christian Andrés Candela Uribe.

Drafting - original draft: Michael Alexander Florez Mufoz, Juan Camilo Jaramillo De La Torre, Stefany Pareja
Lopez, Stiven Herrera, Christian Andrés Candela Uribe.

Writing - proofreading and editing: Michael Alexander Florez Munoz, Juan Camilo Jaramillo De La Torre,
Stefany Pareja Lopez, Stiven Herrera, Christian Andrés Candela Uribe.

https://doi.org/10.62486/latia2024104 ISSN: 3046-403X

https://doi.org/10.1109/ASE56229.2023.00096
https://doi.org/10.62486/latia2024104

	Marcador 1

