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ORIGINAL

Code optimization opportunities in the JavaScript ecosystem with Rust

Volodymyr Kozub1
  

ABSTRACT

This paper explores the potential of o0ptimizing node.js applications by integrating rust. In particular, in 
processing cpu-intensive tasks where javascript faces performance limitations due to its single-threaded 
architecture. Rust’s memory safety and parallelism model, which eliminates the need for a garbage 
collector, makes it an attractive alternative to traditional c/c++ modules for extending the capabilities 
of node.js. This study explores the performance gains achieved by integrating rust, both through 
native bindings and WebAssembly, demonstrating significant improvements in computational efficiency, 
especially in parallel processing scenarios. Rust’s ability to efficiently handle computation-intensive 
workloads with work interception algorithms is emphasized as a key factor in overcoming javascript 
bottlenecks. The study includes a detailed performance evaluation that compares synchronous and 
asynchronous modules in node.js with rust implementations. Tests demonstrate how rust optimizations 
outperform javascript by up to ten times in certain computational tasks. The study also evaluates cross-
compiled rust modules using WebAssembly in the browser environment, which once again illustrates 
the advantages of rust in providing near-native performance. The results emphasize the potential of 
rust to enhance node.js applications by making them more scalable, reliable, and efficient for high-
performance web applications.
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RESUMEN

Este artículo explora el potencial de optimización de las aplicaciones node.js mediante la integración 
de rust. En particular, en el procesamiento de tareas intensivas en cpu, donde javascript se enfrenta a 
limitaciones de rendimiento debido a su arquitectura monohilo. La seguridad de memoria y el modelo 
de paralelismo de Rust, que elimina la necesidad de un recolector de basura, lo convierten en una 
alternativa atractiva a los módulos c/c++ tradicionales para ampliar las capacidades de node.js. Este 
estudio explora las ganancias de rendimiento conseguidas mediante la integración de rust, tanto a 
través de bindings nativos como de WebAssembly, demostrando mejoras significativas en la eficiencia 
computacional, especialmente en escenarios de procesamiento paralelo. La capacidad de Rust para 
manejar eficientemente cargas de trabajo intensivas en computación con algoritmos de interceptación 
de trabajo se enfatiza como un factor clave para superar los cuellos de botella de javascript. El estudio 
incluye una evaluación detallada del rendimiento que compara módulos síncronos y asíncronos en node.
js con implementaciones de rust. Las pruebas demuestran cómo las optimizaciones de rust superan a 
javascript hasta diez veces en determinadas tareas computacionales. El estudio también evalúa módulos 
de rust compilados de forma cruzada utilizando WebAssembly en el entorno del navegador, lo que 
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ilustra una vez más las ventajas de rust a la hora de proporcionar un rendimiento casi nativo. Los resultados 
enfatizan el potencial de rust para mejorar las aplicaciones node.js haciéndolas más escalables, fiables 
y eficientes para aplicaciones web de alto rendimiento.

Palabras clave: Optimización de Node.js; Integración de Rust; Integración de Lenguajes de Programación; 
Módulos de Node.js.

INTRODUCTION
Optimization of Node.js code in web applications has become an urgent task for developers who face 

performance and efficiency issues when working with a single-threaded environment. Despite the flexibility 
and convenience of JavaScript, which allows you to quickly create scalable systems, the limitations caused by 
single-threading and dynamic memory management sometimes make it difficult to perform resource-intensive 
tasks (Pratama & Raharja, 2023). 

With the growing demands for parallel processing and complex computing, approaches such as integrating 
C/C++ modules or using the modern Rust language are becoming critical to solving these problems. Rust’s 
capabilities make it a good match for Node.js, especially for tasks that require high parallelism and efficient 
resource utilization. In addition, the emergence of WebAssembly has further expanded the possibilities for 
integrating Rust into web applications, offering near-native performance and the ability to work seamlessly 
with JavaScript. Using Rust can complement JavaScript in Node.js applications and improve not only 
performance but also security. By integrating Rust, developers can retain the flexibility of JavaScript while 
gaining the performance benefits of a system programming language. This is necessary in CPU-intensive tasks 
and applications that require high parallelism (Serefaniuk, 2024).

The study examines the methodology for optimizing web applications to improve their reliability and 
scalability. Particular attention is paid to the use of distributed caching, architectural approaches, and 
programming languages that allow for better performance. The methodology is focused on building and testing 
Node.js application architecture, as well as exploring opportunities to improve efficiency by porting resource-
intensive components to Rust. This allows you to analyze the impact of various architectural solutions and tools 
on the performance and scalability of web applications.

The basic structure of pure JavaScript web applications in Node.js involves a server side that processes 
HTTP requests, performs routing, data processing, and is responsible for interacting with databases. The event 
management model is used, in which each request is queued and processed sequentially. This allows you to 
process many requests simultaneously, but limits the efficiency at high computing loads. As an example, a 
simple project to calculate a number using the Monte Carlo method is used to learn the architecture of Node.
js applications. This task requires a pseudo-random number generator (PRNG) that must use an initial value to 
ensure reproducible results. In a typical Node.js application, the workspace is structured in a single directory, 
which provides a visual representation of the project workflow.

The project is initialized using npm init, creating a package.json file. This file contains metadata, 
dependencies, and scripts for tasks such as testing, benchmarking, and building the application. Node.js uses 
the CommonJS module system, which allows developers to break logic into separate reusable modules. In this 
project, the first module implemented is the RNG, which uses a modified Park-Miller algorithm, chosen for 
its simplicity. Tests are configured using the NODE_ENV environment variable, which allows you to distinguish 
between test and production environments.

The second version of the RNG is built using bitwise operations for better performance. To measure 
performance, the benchmark.js framework is included in the project. The number evaluation module is written 
using the RNG, and tests are added to check the accuracy of the number value. Next, benchmarks are run 
to evaluate the overall performance of the system. Node.js offers modules that allow you to create multi-
threaded request processing. Thus, the node-gyp module is a critical tool for compiling native modules into 
Node.js, especially when you need to integrate native code written in C or C++ into the Node.js environment. 
The tool is based on Google GYP (Generate Your Projects), a Meta-Build system that allows you to create 
configuration files for different platforms, making it easier to support cross-platform development. Node-gyp 
automatically generates and customizes build files (e.g., Makefile or Visual Studio Solution), taking into account 
different versions of Node.js and the features of the platform on which it is executed.

Native modules allow you to perform computationally intensive tasks outside of the JavaScript interpreter, 
which significantly improves application performance. Node-gyp allows you to integrate C/C++ code into Node.
js, turning it into a native module. This tool automatically compiles and links native code for the target 
platform, which ensures its compatibility with the Node.js API and makes direct integration with JavaScript 
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possible.
One of the main challenges in developing native modules is that different platforms (Linux, macOS, Windows) 

have their own build and configuration systems. Node-gyp automatically generates configuration files specific 
to each of them, making it easy to work with C/C++ code regardless of the platform. Thanks to GYP support, 
node-gyp can be customized for different versions of Node.js, automatically taking into account changes in 
the ABI (Application Binary Interface) between versions. This allows native modules to maintain backward 
compatibility with different versions of Node.js without the need for significant code changes.

METHOD
When building native Node.js applications, a common approach is to use the node-gyp tool, which is 

based on Google’s Meta-Build system, GYP. This tool allows you to cope with the complexities of working with 
different build platforms and versions of Node.js. The key advantage is that developers don’t have to worry 
about the underlying V8 engine. Instead, they can use abstraction layers such as NAN (Native Abstractions for 
Node.js), which simplifies the process of creating native bindings. NAN provides a C++ header file with macros 
and utilities that help manage the interaction of native code with Node.js. To integrate native code into the 
project, dependencies are included by running npm install --save node-gyp nan bindings. The configuration 
for building the application is saved in a file called binding.gyp, which defines how to compile C++ code into a 
native module. This file is placed together with package.json in the project root.

Native code written in C++ is stored in a separate directory (usually called native), and the main C++ source 
file, addonc.cc, is used to export C++ functionality to JavaScript. This file is referenced in binding.gyp as the 
source file. The compilation process includes binding the code to the V8 and NAN header files, which ensures 
seamless compatibility between C++ and JavaScript. Once the native code is written, it can be built by running 
node-gyp configure and then node-gyp build, which compiles the native module. The resulting files are placed 
in the build/ directory. The index.js file in the project is responsible for exporting the compiled C++ modules, 
making them suitable for reuse in the JavaScript environment.

For tasks that require significant computing power, such as math, image processing, or encryption, parts 
of the code are rewritten in Rust. Rust provides high performance and memory control without the need for a 
garbage collector like JavaScript. Although Rust is a system programming language, it can be easily integrated 
into the workflow and structure of a Node.js project. Similar to Node.js, Rust projects are organized in a 
directory called a crate, which is the equivalent of a Node.js module. To start the migration, a container 
is created in the directory using the cargo command, a Rust build tool similar to npm. Running cargo new 
pi_estimator creates a directory named pi_estimator with a structure similar to how npm init works in Node.js. 
Using WebAssembly to compile Rust code and integrating it into Node.js allows you to execute Rust functions 
at high speed while interacting with JavaScript. WebAssembly provides low access to system resources and high 
performance.

The equivalent of package.json in Rust is the Cargo.toml file, which manages project dependencies and 
configurations. All source code is placed in the src/ directory. An RNG module originally written in JavaScript 
can be ported to Rust by translating the JavaScript code line by line to Rust syntax. Rust syntax is similar to 
JavaScript syntax. Especially with support for programming functionality such as loops, maps, and filters, which 
makes it easier for developers familiar with JS to transition.

While direct numeric operations may not be fully optimized when first translated, Rust’s performance can 
be improved over time by refining low-level code, something that JavaScript cannot offer. Rust also differs 
from C++ in that it doesn’t rely on classical inheritance, instead allowing you to implement methods for 
structures in a way that resembles the JavaScript prototype chain. JavaScript implementation tests can also 
be ported to Rust. The cargo test command in Rust works similarly to the Node.js npm test. Additionally, Rust 
has benchmarking tools, such as Bencher, that can be used to evaluate the performance of both the original 
JavaScript implementation and the new version of Rust.

After the RNG module is ported and tested, the number estimation function will also be ported to 
Rust, including tests and benchmarks. You can compare the performance between the JavaScript and Rust 
implementations to see if Rust offers any noticeable improvements. If the Rust implementation proves to be 
better, the last step is to create bindings to link it to Node.js. Since Node.js applications are written in C++, 
Rust code must be wrapped in a C-compatible interface to interact with Node.js. Rust can mimic C by using 
C-compatible types and C-style function definitions, allowing a Node.js application to call Rust code directly. 
Rust compiles as a shared object using the cdylib option in the Cargo.tml file. No additional configuration files 
or Makefiles are required, as Rust can build both the test and production versions using the cargo build and 
cargo build - release commands. Once compiled, the Node.js application described in the previous section 
can bind to the Rust object, exposing its functionality to JavaScript. The binding.gyp file can be updated to 
automatically build the Rust object when node-gyp is called.
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RESULTS
Performance evaluation overview

This section presents the results of the performance evaluation, focusing on CPU utilization, memory 
allocation, and computational performance. The results are visualized through a series of charts that provide a 
detailed comparison of each approach. The analysis shows that modules that lack parallel execution capabilities, 
such as purely synchronous implementations, consistently use a single processor core. As shown in Figure 4, the 
CPU load of synchronous modules remained unchanged regardless of the increase in sample size. 

In contrast, modules with parallel mechanisms, such as addonConAsync, showed performance improvements 
with increasing input size, with more noticeable improvements starting with 1*106 samples.

For example, at this level, addonConAsync ran on about three cores, while Rust-based work interception 
applications such as addonWsAsync used about five cores. As the workload increased, all work interception 
approaches peaked at 13 cores at the sample 1*107 mark, while more traditional parallel implementations 
remained limited to about three cores. The highest utilization was observed at 1*108 samples and above, with 
modules such as addonWsAsync approaching the theoretical benchmark maximum of 24 cores (figure 1).

Figure 1. Average CPU load in Node.js
Source: developed by the author based on Kyriakos-Ioannis & Nikolaos (2022).

These findings were used to adjust the Node.js thread pool, in particular, to adjust the UV_THREADPOOL_
SIZE environment variable, which determines the number of threads available to a Node.js process. By 
default, this value is set to four threads, which led to underutilization on a 24-core system until it was 
adjusted manually. However, Rust’s work hijacking model implemented through rayon crate was independent 
of this limitation, allowing it to dynamically scale across multiple threads without additional configuration 
(figure 2).

The memory usage measurements summarized in figure 2 show minimal variation between the different 
modules, with usage ranging from 62 to 68 MB. This consistency indicates that the tested algorithm is more 
dependent on CPU resources than memory. Although it was expected that modules that use external libraries 
would initially allocate slightly more memory due to their load dependencies, the overall impact on peak 
memory usage remained negligible. This indicates that the introduction of Rust or other third-party code into 
the Node.js environment does not lead to a significant increase in memory, except for the minimal increase 
associated with the connection of auxiliary modules.

The comparative analysis of synchronous and asynchronous implementations visualized in figure 3 shows 
that Rust-based modules significantly outperform their JavaScript counterparts, especially under heavy load. 
Synchronous implementations such as pureJSSync worked well before 1*109 samples, but showed a sharp 
decrease in the number of operations per second during samples. Conversely, addonSync initially lagged 
behind but outperformed pureJSSync with more samples, indicating that the initial advantage of JavaScript 
JIT optimizations diminishes as the workload grows.
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Figure 2. Average maximum memory allocation peak in Node.js
Source: developed by the author based on Kyriakos-Ioannis & Nikolaos (2022)

Figure 3. Average number of operations per second of synchronous implementations in Node.js
Source: developed by the author based on Kyriakos-Ioannis & Nikolaos (2022)

Synchronous implementations such as pureJSSync performed well before samples, but showed a sharp 
decrease in the number of operations per second with 1*1010 samples. Conversely, addonSync initially lagged 
behind but outperformed pureJSSync with more samples, indicating that the initial advantage of JavaScript JIT 
optimizations diminishes as the workload grows. Including the bitwise optimized versions showed that JavaScript 
and Rust react differently to such code optimization. While the pureJSBwSync implementation showed a 1,45-
2,4x performance increase over pureJSSync, the BwSync addon for Rust was able to outperform the optimized 
JavaScript version by up to 6x per sample. This suggests that Rust’s low-level optimization capabilities can lead 
to significant performance gains over JavaScript, especially for computing heavyweight tasks.

The Rust implementations of asynchronous interception of work (addonWsAsync and addonBwWsAsync) 
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showed even more significant results. These modules outperformed Node.js thread pool-based approaches by 
1,6-15,1 times, which indicates their effectiveness in handling parallel loads. Importantly, these implementations 
did not require detailed manual tuning to achieve high levels of parallel performance, unlike the default thread 
pool mechanisms in Node.js. The evaluation also extended to WebAssembly implementations, comparing single-
threaded and multi-threaded performance in browsers such as Chromium and Firefox. The results showed that 
Rust-based WebAssembly implementations achieved almost four times the performance of similar JavaScript 
modules (figures 4 and 5). 

Figure 4. Average number of operations per second in Chromium
Source: developed by the author based on Kyriakos-Ioannis & Nikolaos (2022).

Figure 5. Average number of operations per second in Firefox
Source: developed by the author based on Kyriakos-Ioannis & Nikolaos (2022).

The single-threaded version of WebAssembly achieved 94,8 % of the performance of its Node.js counterpart 
in Chromium and 69,4 % in multi-threaded scenarios, demonstrating the potential of WebAssembly for high-
performance web applications.

Testing: CPU usage, memory allocation and productivity.
For testing purposes, several modules have been created to explore synchronous and asynchronous 
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approaches. Asynchronous modules run in separate threads using an event loop that prevents the main thread 
from blocking. In contrast, synchronous modules can cause the main thread to block, resulting in a decrease 
in performance. Module names include the suffix “Sync” or “Async” to distinguish between synchronous and 
asynchronous operations. The pureJSSync module is a fully synchronous JavaScript implementation. The 
optimized version of pureJsBwSync uses bitwise operations for better performance. The ffiSync module is built 
using the ffi-napi library, which allows you to synchronously call C libraries in Node.js without an additional 
bridge.

Two main modules were created: addonSync (synchronous) and addonAsync (asynchronous). The addonAsync 
module runs in a separate thread to avoid blocking single-threaded JavaScript execution. The more advanced 
version of addonConAsync splits tasks into blocks that can be processed in parallel using a Node.js thread 
pool with 24 blocks assigned based on the available cores on the test system. There were also created bitwise 
optimized versions (addonBwSync, addonBwAsync, and addonBwConAsync).

To make full use of Rust’s parallelism, we used rayon crate, which implements a work interception 
algorithm. Unlike the Node.js thread pool, rayon efficiently manages multi-threaded computing and allows 
threads to “intercept” the task dynamically. This makes it easy to switch from the Node.js thread pool model 
to Rust parallel execution without modifying the JavaScript code. This approach made it possible to create 
both synchronous (addonWsSync) and asynchronous (addonWsAsync) modules, the optimized versions of which 
(addonBwWsSync and addonBwWsAsync) use bitwise operations.

For web applications, the addonBwSync and addonBwWsSync modules were cross-compiled with WebAssembly, 
implementing both single-threaded and multi-threaded execution. These modules used the Web Workers API 
and the SharedArrayBuffer API to provide parallelism without blocking the main thread.

The Linux perf tool was used to test the single-core modules’ use of a single core, while the parallel modules 
efficiently used additional cores. The CPU utilization of each module was measured 10 times for each degree 
from 1 to 10 and calculated as:

{𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢} = �∑ 𝑐𝑐𝑢𝑢𝑝𝑝𝑝𝑝 �𝑐𝑐𝑝𝑝 _𝑢𝑢𝑢𝑢𝑒𝑒 (10𝑛𝑛 )�
10

10
𝑛𝑛=1 �,       (1) 

where perf is a tool used to measure the performance of functions;
pi_est(10n) is the function for estimating a number using the Monte Carlo method.
The time tool recorded the minimum, maximum, and average memory usage in kilobytes for each module.
The benchmark.js framework measured performance in operations per second for each module in both 

Node.js and web browsers. It is calculated as follows:

�𝑜𝑜𝑐𝑐𝑢𝑢𝑝𝑝𝑢𝑢𝑒𝑒𝑝𝑝𝑜𝑜𝑛𝑛𝑢𝑢
𝑢𝑢𝑢𝑢𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠

� = �𝑏𝑏𝑢𝑢𝑛𝑛𝑐𝑐ℎ�𝑐𝑐𝑝𝑝_𝑢𝑢𝑢𝑢𝑒𝑒(10𝑛𝑛)��,       (2) 

where bench is a tool for measuring the number of operations that can be performed per unit of time, which 
gives an idea of the speed of execution of a particular code.

The tests were performed on an Asus Z10PA-D8 motherboard with two Intel Xeon E5-2620 v3 processors (2.4 
GHz, 24 cores with Hyper-Threading) and 64 GB of RAM. The system was running Arch GNU/Linux (kernel 6.9.3) 
with Node.js 20.3.0, GCC 14.1.0, and Rust 1.71.0 on a nightly basis. WebAssembly was tested in Mozilla Firefox 
115.0 and Chromium 115.0.5790.98

DISCUSSION 
Integration of Rust with Node.js has become an effective solution to the problems associated with JavaScript 

single-threading. Rust’s concept focuses on providing memory safety and concurrency without using a garbage 
collector, making it an ideal choice for extending the functionality of Node.js (Popescu et al., 2021). This is 
useful for managing CPU-intensive tasks where JavaScript often encounters performance bottlenecks.

Rust’s compatibility with WebAssembly (Wasm) has further expanded its use by allowing Rust code to run 
in browsers simultaneously with JavaScript. This combination provides performance close to native. This 
significantly improves the performance of compute-intensive applications such as real-time data processing 
and Internet of Things (IoT) solutions (Dahiya & Dharani, 2023; Pratama & Raharja, 2023). Using Wasm, Rust 
modules can be easily integrated into Node.js environments, offering significantly faster execution than pure 
JavaScript implementations (Ray, 2023).

The complementary strengths of Rust and JavaScript have been revealed in studies comparing Rust’s 
parallelism model with Node.js’ event loop. Rust’s ability to implement work hijacking algorithms allows for 
more efficient parallel processing, overcoming typical bottlenecks in JavaScript’s event-driven architecture 
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(Tushar & Mohan, 2022). This makes Rust particularly suited to offloading complex computational tasks from 
Node.js, allowing Node.js to retain its non-blocking I/O benefits while benefiting from Rust’s computational 
efficiency.

Although Rust’s memory management system based on the concepts of ownership and borrowing requires 
some learning curve, it offers significant benefits. It significantly minimizes the risks of memory leaks and 
data races, making it ideal for applications that require high reliability (Hoffman, 2019; Popescu et al., 2021). 
Unlike C/C++ bindings, which require careful management of pointers and memory, Rust provides compile-time 
guarantees that simplify integration while maintaining high performance (Goyal, 2023).

Performance benchmarks consistently demonstrate the benefits of using Rust for compute-intensive Node.
js applications. Studies show that Rust can achieve speeds up to 10 times faster than equivalent JavaScript 
implementations in CPU-intensive scenarios, especially when both languages are optimized for high performance 
(Ardito et al., 2021). These results support the use of Rust for backend services where minimizing latency is 
critical, such as in database systems and cryptographic processing (Dahiya & Dharani, 2023).

Despite its benefits, integrating Rust into Node.js workflows comes with some challenges. Developers need to 
familiarize themselves with Rust’s unique programming paradigms, and setting up native bindings or compiling 
Rust to Wasm can complicate the development process (Ray, 2023). However, the long-term benefits of stability 
and scalability often outweigh these initial difficulties, especially in projects where performance is a critical 
factor (Hoffman, 2019; Kyriakos-Ioannis & Nikolaos, 2022).

Combining the computational power of Rust with the flexibility of JavaScript allows developers to create 
versatile applications that can handle a variety of workloads. This hybrid approach allows for rapid prototyping 
with JavaScript while using Rust for module performance, striking a balance between development speed and 
computational efficiency (Tushar & Mohan, 2022).

CONCLUSIONS 
This study examined the process of developing Node.js applications, from initial prototyping to the stages 

where optimization and performance enhancement become crucial. The potential advantages of using Rust 
as an alternative to traditional C/C++ solutions to extend the capabilities of Node.js are emphasized. Rust 
offers a familiar workflow for JavaScript developers with similar module models and structures. This facilitates 
compatibility between the two languages. In addition, Rust provides increased memory safety and no data 
races, solving the problems that C/C++ faced in previous integrations with Node.js.

Performance evaluations showed that Rust significantly improves the resource utilization of Node.js, 
especially in computationally intensive tasks. Rust implementations, both synchronous and asynchronous, 
performed better than their JavaScript counterparts, showing more than a tenfold improvement in certain 
scenarios. Rust’s intercepting parallelism models also delivered superior performance, handling various 
computational workloads more efficiently than Node.js’ default thread pool.

Cross-compiling Rust with Wasm further proved Rust’s advantages in browser-based environments, achieving 
near-native performance. Wasm modules based on Rust outperformed JavaScript implementations in real-
time data processing tasks, demonstrating up to four times the performance gain in Firefox and twice the 
performance in Chromium.

Despite its strengths, this study revealed some limitations. It did not consider the differences between cold 
and warm start scenarios, focused on a single algorithm, and did not take into account the cost of compiling 
Wasm in browsers. Future research could explore these areas, as well as expand the benchmarks to include a 
wider range of algorithms.

Rust’s integration with Node.js provides a balanced approach, combining the rapid prototyping capabilities 
of JavaScript with the robust performance and security of Rust. This synergy paves the way for building modern 
web applications that can adapt to different performance requirements without the risks associated with C/C++ 
code. Rust’s potential to improve the efficiency and stability of Node.js applications makes it a valuable asset 
in the high-performance development landscape.
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