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ABSTRACT

The increasing complexity of global air traffic management requires innovative surveillance solutions 
beyond traditional radar. This chapter explores the integration of artificial intelligence (AI) and machine 
learning (ML) in satellite imagery processing for enhanced air traffic surveillance. The proposed AI framework 
utilizes satellite remote sensing, computer vision algorithms, and geo-stamped aircraft data to improve 
real-time detection and classification. It addresses limitations in conventional systems, particularly in 
areas lacking radar coverage. The study outlines a three-phase approach: extracting radar coverage from 
satellite imagery, labeling data with geo-stamped aircraft locations, and applying deep learning models for 
classification. YOLO and Faster R-CNN models distinguish aircraft from other objects with high accuracy. 
Experimental trials demonstrate AI-enhanced satellite monitoring’s feasibility, achieving improved detection 
in high-traffic zones. The system enhances situational awareness, optimizes flight planning, reduces airspace 
congestion, and strengthens security. It also aids disaster response by enabling rapid search-and-rescue 
missions. Challenges like adverse weather and nighttime monitoring remain, requiring infrared sensors and 
radar-based techniques. By combining big data analytics, cloud computing, and satellite monitoring, the 
study offers a scalable, cost-effective solution for future air traffic management. Future research will refine 
models and expand predictive analytics for autonomous surveillance, revolutionizing aviation safety and 
operational intelligence.

Keywords: Artificial Intelligence (AI); Satellite-Based Air Traffic Monitoring; Deep Learning; Computer Vision; 
Remote Sensing; Real-Time Aircraft Tracking.

RESUMEN

La creciente complejidad de la gestión del tráfico aéreo global requiere soluciones de vigilancia innovadoras 
más allá del radar tradicional. Este capítulo explora la integración de la inteligencia artificial (IA) y el 
aprendizaje automático (ML) en el procesamiento de imágenes satelitales para mejorar la vigilancia del 
tráfico aéreo. El marco propuesto de IA utiliza sensores remotos satelitales, algoritmos de visión por 
computadora y datos de ubicación geoetiquetados de aeronaves para mejorar la detección y clasificación en 
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tiempo real. Aborda las limitaciones de los sistemas convencionales, particularmente en áreas sin cobertura 
de radar. El estudio describe un enfoque de tres fases: extraer cobertura de radar de imágenes satelitales, 
etiquetar los datos con ubicaciones geoetiquetadas de aeronaves y aplicar modelos de aprendizaje profundo 
para la clasificación. Los modelos YOLO y Faster R-CNN distinguen las aeronaves de otros objetos con alta 
precisión. Los ensayos experimentales demuestran la viabilidad de la vigilancia satelital mejorada por IA, 
logrando una detección mejorada en zonas de alto tráfico. El sistema mejora la conciencia situacional, 
optimiza la planificación devuelos, reduce la congestión del espacio aéreo y refuerza la seguridad. También 
ayuda en la respuesta ante desastres al permitir misiones de búsqueda y rescate rápidas. Permanecen desafíos 
como el clima adverso y la vigilancia nocturna, lo que requiere sensores infrarrojos y técnicas basadas en 
radar. Al combinar análisis de grandes datos, computación en la nube y monitoreo satelital, el estudio 
ofrece una solución escalable y rentable para la gestión futura del tráfico aéreo. La investigación futura 
perfeccionará los modelos y ampliará el análisis predictivo para la vigilancia autónoma, revolucionando la 
seguridad de la aviación y la inteligencia operativa.

Palabras clave: Inteligencia Artificial (IA); Monitoreo Aéreo Basado en Satélites; Aprendizaje Profundo; Visión 
por Computadora; Sensores Remotos; Seguimiento de Aeronaves en Tiempo Real.

INTRODUCTION
Global civil aviation has seen rapid growth throughout the decades. To provide a safe and sound air traffic 

control system, worldwide government organizations have been cooperatively developing innovative technology 
based on science and research.(1) The increase in the frequency of flight paths means that a large number of 
aircraft are continuously in the atmosphere. Air traffic should therefore be closely monitored and managed, 
and efficient use of airspace should be maintained. By using the latest technology, aircraft moving anything can 
be easily monitored globally.(2)

The purpose of this text is to give an idea of how innovative technologies could be used in airspace 
surveillance. Artificial intelligence can be used for image classification of air traffic surveillance. The target of 
this study increase the accuracy of image analysis and the popularity of object detection of planes by satellite 
imaging sensor technology.(3) With the help of image processing by the machine learning algorithm, the whole 
world’s atmosphere can be accurately monitored, and the overall air traffic situation can be detected.(4) The 
application of this research can improve the big data domain and help with the problem of flight delay and 
plane crash prediction. In addition, the motivations and potential are significant attraction in the development 
of this system.(3,5,6,7)

Nowadays, the air traffic industry is one of the rapidly developing commercial businesses, and the size 
of the industry is increasing day by day. The monitoring of air traffic is necessary because of the increased 
importance of cargo transportation, commercial flights, and real-time surveillance, besides the security and 
defense perspective. Air traffic surveillance is also required for the safe travel of each passenger on each 
flight. Traditional monitoring systems use radars and receivers to detect and monitor all traffic within specific 
airspaces and regions, which are communicated through the ground control station. It cannot cover the whole 
air traffic because it sends and receives signals in a straight-line pathway with the help of electromagnetic 
waves or radio frequency. Aircraft can be seen on the primary radar, which will allow locating the traffic 
position because radars use electromechanical waves or radio frequency to detect the aircraft. Legal Right to 
Access plays a major role in accessing the radars. The receiver is mainly used in the maritime industry, and it 
also picks up the aircraft signal if they carry the transponder.(4,8,9)

The era of digitization in aviation drastically increases the complexity of air traffic day by day, resulting 
in the limitation of the capability of the traditional air traffic monitoring system.(4,8,9) Integration of satellite/
terrestrial communication and technology with machine learning and artificial intelligence is hoped to meet 
our future challenges in terms of monitoring efficiency, adaptability, and minimizing foreign object debris 
during operations or the swarming of drones on any mission. The traditional monitoring system needs a signal 
range, more power, and higher power dissipation, while the communication range is less when compared to 
the satellite communication system. The proposed work mainly focuses on the use of machine learning with 
satellite imaging to avoid signal coverage limitations and the aforementioned problems. The reasons for this 
introduction are to have near real-time traffic movement, accurate identification, and autonomous aircraft 
movement.(10,11,12)

Satellite imaging has revolutionized the monitoring and surveillance market segments because of the 
decreasing cost of the technology and high spatial and spectral resolution capabilities that have been improving 
at a fast pace. Organizations maintain long-spanned archives of remote sensing data that span decades. 
Historically, aerial surveillance was accomplished through an array of methods by employing satellites, drones, 
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unmanned aerial vehicles, and fixed-wing or rotary-wing manned aircraft. These methodologies have their own 
set of challenges, including operational costs, technical, and political constraints. Tools and technologies have 
improved over time but fundamentally remain the same. Aerial and satellite images provide an excellent visual-
based history of geographical locations, but image interpretation is computational, manual, and even obtaining 
the imagery in the first place is very expensive.(13,14,15,16)

During the past century, extensive research has been conducted to utilize aircraft and satellites as sources of 
traffic surveillance, monitoring, and capturing vehicle behavior, providing a visual understanding of geographical 
locations.(17) Satellites can render a visual understanding of vast geographical areas, and monitoring through 
satellites has gained multimedia importance.(18,19,20,21) This has reduced the need for human personnel to monitor 
vast geographic regions and provides extensive opportunities in areas like traffic surveillance. Increased 
and rapid growth in the development of artificial intelligence has led to the forecast of a next-generation 
surveillance system for air traffic that operates automatically and precisely.(22) Many autonomous systems have 
been suggested to resolve the air traffic monitoring problem and to be part of air traffic control management. 
This overview encompasses an up-to-date view of technological challenges, potential solutions, and a brief 
in-depth survey of the application of saturated images to monitor air traffic. This paper discusses some image 
processing-related problems and their solutions to carry out robust surveillance in the aerial domain. Image-
based air traffic monitoring systems are incapable of working accurately in different imaging conditions at 
different times of the day. Moreover, some major problems still need to be addressed, such as aircraft smearing, 
removal of exhaust gas, community clustering, and aircraft counting.

 Air traffic around the world continued to grow, and the pressure on air traffic management to manage traffic 
efficiently has also increased. This has made traffic surveillance important. Among different traffic surveillance 
methods, aerial surveillance plays an important role. All developed countries and a few developing countries 
make use of radar to monitor air traffic in a particular region. The advancement in radar systems and the 
development of the latest transponder codes are the main challenges in aerial surveillance (figure 1). Hence, 
there exists a demand for passive surveillance data that complements radar data.(23,24,25,26)

Figure 1. AI-powered satellite imagery processing infographic(27,28,29)

Artificial Intelligence (AI) is playing a significant role in aerial surveillance. In satellite imagery, AI enriches 
data and makes it more accurate to predict precisely when aerial images of objects are taken. The testing and 
the results have shown that the model increases the amount of data and makes it possible to prevent traffic 
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jams and accidents before they happen. Satellite imagery is especially helpful given the ongoing expansion of 
large satellite constellations orbiting the Earth. Satellite imagery as a source for digital elevation monitoring 
data offers various benefits: wide coverage with high spatial and high temporal resolution.(30) AI can aid satellite 
imagery in many ways. The digitized data from space can be processed to carry out facial recognition, monitor 
maritime traffic, track illegal animal poaching, and many more. In the same way, AI can utilize the data 
processed from satellite imagery for surveillance systems, and traffic sighting systems, and optimally enhance 
airline carrier operating techniques.(31) This would help in serving customers better by maintaining the SLA. 
The data processing of space-borne systems to generate actionable data for traffic operators must be efficient 
and reliable for time-sensitive applications. This document describes the influence of space-borne imagery on 
global traffic surveillance and introduces a system architecture that processes the data on board, making use 
of distributed edge computing.(32)

Air travel has become a major mode of transportation, resulting in an ever-increasing demand for monitoring 
the skies. The development of four-dimensional air traffic is rooted in the history of global commerce and 
politics, as it has ample potential to reroute in real-time according to the current weather and other conditions. 
Therefore, to meet the requirements of this dynamic and ever-increasing demand, air traffic surveillance 
systems have kept pace with advancements in technology. Satellites have opened new and efficient means 
of surveillance that were previously unavailable to air traffic managers for large areas of the Earth and vast 
airspace, along with 4D monitoring. Satellites, with their unique surveillance capabilities, digital and integral 
methodology, and the ability to monitor large geographical areas—where one pixel can cover around 30 to 40 
km²—have immense potential to meet air traffic surveillance requirements for vast geographical areas covering 
major traffic.(7)

 Air traffic is growing at an average of about 5 % per year worldwide. It is expected that by the year 2025, 
world air traffic will reach about three times the present level.(4,5,30) The existing primary and secondary radars 
for air traffic surveillance are becoming insufficient to cope with the total air traffic scenario. India is also 
expected to see a drastic increase in air traffic movements by the year 2025. India has about 95 military and 
civil airports, of which 30 are international airports. From all these airports, hilly and mountainous areas, 
islands, and transit areas that have a probability of terror threats must be protected by around-the-clock, 
minute-by-minute, all-weather surveillance by ATS. In the circumstances of dense forests, seas, and deserts, 
commercial flights must adhere to their sky routes and can identify clear sky routes in the shortest possible 
time while maintaining a safe distance from oncoming flights. 

Rationale of the Study
Air travel has become a pertinent part of everyday life with rapid advancements in technology, economic 

development, and population mobility, spurring the growth of commercial aviation. With air transport networks 
increasingly clogged due to surging air traffic, air traffic management systems face huge challenges in navigation, 
tracking, and surveillance adherence. Currently, ground-based air traffic surveillance is conducted by utilizing 
conventional radar technology, which demands high acquisition and maintenance costs. The ability to transport 
radar data from radar sensors delivers a concurrent extensive visualization for air situation awareness. Despite 
the ubiquitous environment of radar sensors, current air traffic surveillance systems confront severe bottlenecks 
induced by growing data volumes and service requirements, ultimately causing jam-packed sensor corridors 
and data overload issues. Integrating machine learning algorithms in image processing of air traffic surveillance 
systems helps increase safety and security in air traffic management.(33,34)

All the above-mentioned limiting factors of ground-based air surveillance necessitate more research in 
developing image-processing techniques in air traffic management. While a few initiatives have been launched 
to develop machine learning and image-processing systems for ramp operations, there are limited alternative 
algorithms available for use in air surveillance applications. A machine learning-based air surveillance system for 
comparing performance with terminal multiliterate results and predicting the best available target designation 
is still distant. Hence, this paper presents an idea to develop an air surveillance system taking into account 
all relevant parameters in the radar image and report on the likelihood estimation of whether an aeroplane 
has appeared in a radar image. An unequivocal detailed radar image description is required for the proper 
implementation of this method on the surveillance system; therefore, this work primarily focuses on surveying 
the available methods for this task.(35)

Objective and Scope
Objective: the objective of this research is to explore existing methodologies, challenges, and possible 

solutions to utilize AI for processing satellite images. The main objective is to explore the technology behind 
AI-powered satellite imagery processing for air traffic surveillance and identify the possible methods and 
technologies to adopt in future research activities to reach the objectives previously stated. The following 
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guiding research questions shall be analyzed: • What technologies, solutions, and methodologies are available 
today to use AI for processing satellite images? • What challenges and possible solutions are identified while 
dealing with satellite images encoding air traffic from an AI-based perspective?

Scope: this research considers the intersection between aviation, data science, and technology engineering, 
specifically the development of AI-based methods and interconnected systems/tools for satellite image processing 
that encode evidence of global aviation operations. Indeed, we are focusing on the technologies, solutions, and 
methodologies that are already existing and tested and can potentially be taken into consideration for being 
fruitful in aiding the creation of an ecosystem for processing satellite imagery. This analysis does not consider 
satellite image capturing and data obtainment under the open-source regime. This means that satellite image 
capturing is done based on agreements between businesses that own satellites or satellite images and businesses 
and authorities that are the intended users of the satellite images. From this perspective, the research shall go 
beyond a theoretical framework, incorporating both academic discourse as well as technology and operations 
in aviation.

Satellite Imagery Processing
Image data acquisition begins with a network of satellites that can access the same point on Earth regularly. 

Both commercial and government resources are called upon to contribute to the resulting regular interval 
data acquisition.(36) Once the images are captured from these satellites, acquisition data undergo a sequence 
of manual and automatic quality checking and validation steps to approve images used in the analysis. Once 
the ground-based validation, calibration, and quality checks are satisfactory, the images are pushed to a Level 
2 pre-processing variable cycle pre-processor for calibration and atmospheric correction. Then, the images 
go through a Level 3 processor that has been designed to take the output of the pre-processor and do further 
processing such as mosaicking for global cover.(37)

The vast amount of pixel information collected by satellites is thought to contain some potentially useful 
details. The process of surface condition monitoring from remote sensing data often involves the extraction 
of useful information from a mass of pixel data. Despite the recent global advancement in remote sensing 
techniques, the present limit of traditional data processing technologies makes it impossible to process 
such large volumes of pixel information. Due to the limitations associated with conventional data processing 
technologies, it has been difficult to carry out the data processing necessary to monitor global air traffic 
surveillance using remotely sensed image data. Beginning with the satellite image and other related data 
acquisition and processing steps, the purpose of image processing analysis can be divided into the feature 
extraction and classification stages in general. These two numerical analyzing technologies are fundamental 
components to interpret meaningful features at the surface level based on a given purpose.
 
Data Acquisition and Preprocessing

Satellite Imagery: for acquiring broader information about Earth, through using space-borne remote 
sensing. The satellite images are either panchromatic or multispectral. The multispectral sensor has a higher 
resolution of spectral bands, while panchromatic is for high-resolution spatial sensing. Various types of sensors 
are used in acquiring remotely sensed data, such as a multispectral scanner, the Thematic Mapper, the Advanced 
Very High-Resolution Radiometer, the Indian Remote Sensing satellites with the Linear Imaging Self-Scanning 
Sensor, and the European Remote Sensing satellite. The acquisition of satellite datasets and the quality of data 
depend on the sensors and the platform. Satellite images are generally space-borne, but some are airborne 
images according to sensor specialist. For processing and obtaining clear information from images, we focus 
on data preprocessing, especially radiometric correction, geometric correction, and coordinate systems. The 
radiometric and geometric calibration processes directly affect the effectiveness of the surveillance mode. The 
preprocessing can be time-consuming, but it is necessary to clarify the details and usage of analysis for the 
desired part of the study for further analysis.(36,38,39)

Normalization scaling and dimensionality reduction are techniques for converting data into a standard 
format to achieve reliable and consistent values for further analysis. Satellite images and all categories of 
mixed satellite images and data of machine learning satellite images that we have been using belong to an 
optical sensor. Data may be presented in cases where optical imagery datasets do not satisfy availability 
requirements. Due to the origin of our data, there may be multiple datasets in the corresponding imaging 
strategy, such as periodic campaigns for the training set to cope with various heterogeneous climatic zones 
and regular purchases for the validation set. The data has been environment or sensor normalized to ensure 
significant consistency of image units, such as radiance, temperature, or backscatter (figure 2). The primary 
preprocessing inherently includes geometric and topographic effects by using orthorectified pixels and, where 
more relevant, terrain-flattened mosaics. 
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Figure 2. AI-Powered satellite, Chinese firm(40)

Feature Extraction and Classification
Feature extraction is the most essential step for finding a significant pattern in the image data. It identifies 

the important traits from an initial raw dataset and further transforms it into a more relevant and convenient 
form to perform efficient classification by removing irrelevant and redundant information. This significant 
pattern or interest can be anomaly detection that detects abnormalities as minor differences from the points 
of interest, such as road conditions, building conditions, and air traffic flow. Additionally, specific structures or 
other traits are used to help establish paths to classify the major structure of it. Consequently, several feature 
extraction processes, such as edge detection, wavelet transform, and runway detection, have already been 
involved to extract any useful information to be used for the further classification task.(41)

Feature extraction performs not only structural characteristics of the various segmentation proposed utilizing 
edge detection, such as k-means, histogram thresholding, and fuzzy approach, to segment various interesting 
features including road and building. This is one possible difference between feature extraction and traditional 
segmentation, where features associated with image objects can be used to perform the classification task. For 
instance, some classification processes have to be performed from the messages. In general, feature extraction 
procedures extract structural important factors either for direct use in the subsequent classification procedures 
or to construct new images.(42,43) Classification extracts those features for characterizing the differences that 
correspond to human vision or automatic view. However, feature classification identifies the useful features 
as interests at the human decision level by the operator to be functioned for improving decision making 
or situational awareness. It is necessary to separate the structural related process to improve the image 
segmentation; the ability to add some additional separation by classifying the features related to direct aids. 
The challenge occurs when data in one class have the same models, which are similar to other classes. This 
problem can occur if feature extraction is not performed properly. Moreover, how will traffic inside the entire 
image be analyzed if the extracted traffic feature is not categorized? If this occurs, then how do we indicate 
traffic in a certain cluster if there is no extraction of traffic features?

In the context of this study, artificial intelligence methodologies are becoming beneficial and able to improve 
the feature extraction and classification problem, aside from how humans can be bridged by machine learning 
tools. To determine how an AI-driven component improves feature selection and the classification result from 
remote sensing images. Besides, the study also aims to determine where an advantageous AI method for global 
flight management and surveillance can be applied. AI proposes several approaches and techniques to categorize 
visual objects directly. The different functionalities of AI, such as deep learning, machine learning, and case-
based reasoning, are chosen to solve the classification problem. Aside from AI functionalities, a classification 
technique is chosen to ensure traffic classification. The various features refer to pixel intensity, location, and 
model traits of the extracted segmentation from batch-extracted image data.(44) The classification technique 
used the mentioned performance of the total accuracy percentage of 100 % to represent the data as the results 
of effective and suitable classification. The classification method adopted can be influenced to effectively 
determine which subclass has the best segmentation by AI. In assessing whether an AI-driven element would 
enhance the classification result, a supervision method was also applied.
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Fundamentals of Artificial Intelligence in Satellite Image Analysis
This chapter introduces the basic principles of AI, and artificial neural networks, and discusses their 

applications in aerial and satellite image analysis. Currently, the two most important technologies in the 
context of data analysis, where large datasets need to be searched for certain behavioural patterns, are 
machine learning and its subset, deep learning (figure 3). This success is visible in the analysis of visual data, 
such as the multitude of pixels that make up satellite imagery. In principle, deep learning is a type of machine 
learning technique in which the algorithm becomes more accurate with increasing data input. As a result, it can 
make complex decisions based on a high-dimensional dataset in less time than humans.

Figure 3. Fusing AI-in remote sensing(45,46,47,48)

The application of AI in aerial surveillance can indicate whether a particular area triggers a security alert, is 
more likely to be subject to terrorist activity, and thus help predict potential hazards. Another example where 
pattern recognition plays an important role is in satellite imagery to detect unusual behaviour. We present an 
overview of a variety of techniques to carry out aerial image analysis, which is also termed scene analysis, 
image analysis, and pattern recognition. Many examples exist of how AI can be used to process satellite imagery. 
Both support vector machines and the ROCHE system have more of a focus on an ‘anomaly’ detection problem, 
rather than simple ‘target’ determination. Also, despite its wonderful capabilities, it is a brute-force classifier 
that cannot easily be inferred into a human-friendly form. It remains largely a ‘black box’.(49)

AI in the system of object recognition focuses more on spatial, monochrome-type imagery. It is restricted in 
its application to the annotation of documents, maps, multispectral imagery, or the extraction of meaningful 
geometric data. AI is not considered when looking at systems of search and tracking within areas of extremely 
dense air traffic. It does not easily fit into adaptive configuration or adjustment if mission specifics are changed 
on the fly. AI can sometimes give a false acquisition of solutions because of concrete priors being accepted, or 
otherwise acting as model-based only. If image clarity is poor, AI will fail more often than conventional image 
processing techniques. These facts often restrict real-world application and use of AI in satellite imagery 
analysis. We emphasize that garbage in, garbage out, is every bit as applicable to AI analysis as it is to any 
other scientific solution. Moreover, this is particularly true when it comes to the rather noisy spatial domain of 
satellite imagery. Pre-processing is therefore always of great importance. Run experiments on satellite images 
and video and compare the results with those from traffic displays. Various comparisons for tutorial aid and 
reports as a case study through this “active pursuit” era.(48)

Integration of AI Technologies in Global Air Traffic Surveillance Systems
Introduction The application of AI technologies in global air traffic surveillance systems is the topic of this 

chapter. Focus is placed on satellite imagery as a complementary sensor for AI-enabled systems, as it can 
be used for tracking aircraft movements and identifying candidates for tracking by terrestrial surveillance 
systems. As AIS use is not required by civilian aircraft worldwide, the combined application of these two 
technologies enhances the system’s effectiveness. In addition to the basic service offered by a legacy ADS-B 
surveillance system, applications such as real-time monitoring are discussed, many of which are focused on 
ways to optimize air traffic operations.(50) Examples include approaches to predictive analytics and procedures 
for optimal flight path calculation in conflict management systems. Successful application of AI technologies in 
surveillance systems in various regions is illustrated by a selection of use cases. To ensure that a system based 
on AI capabilities is fully operational, it must be seamlessly integrated with existing air traffic management 
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automation systems. High-fidelity data provided via satellite imagery helps significantly extend tracking 
possibilities using airspace surveillance capabilities at a relatively low cost for the major part of an aircraft’s 
mission and has important implications for civil aviation authorities worldwide.(51)

Use Cases AI-empowered and satellite-imagery-enabled air traffic surveillance systems have seen successful 
implementations worldwide. An AI algorithm for detecting aircraft and tracking from satellite image series will 
be delivered to an ATM agency, where we hope to demonstrate the performance of satellite imagery alongside 
an operational terrestrial ATM system. Working with a project proves the ability to track air traffic in remote 
areas where no ADS-B is available. Overall, the application of AI in air traffic surveillance has the potential 
to significantly improve the safety of air travel. Besides, it can ensure that the airspace is safe and can be 
predictively optimized for increased traffic from emerging aircraft such as drones and EVTOL (electric vertical 
takeoff and landing). Data sharing and the participation of several aviation agencies are very important for a 
better return on investment, in addition to being a kind of acknowledgement of the therapeutic properties of 
aviation systems.(52)

Artificial Intelligence in Air Traffic Surveillance
Commercial aviation works on the three main principles of safety, traffic flow management, and schedule 

adherence. Out of these, ensuring safe flight operations even during unforeseen events majorly depends on 
the real-time availability of the ground and surrounding air situation. The existing ground-based infrastructure 
is effective in monitoring air traffic already under surveillance. However, as soon as an aircraft arrives outside 
the domestic coverage of a controller’s radar, air traffic surveillance becomes a challenge. An aircraft starts 
surveillance-free operation as the flight progresses. Various state-owned and private organizations are working 
on the concept of air traffic surveillance using space-based sensors like satellites. The main limitation of the 
technology is its data processing capabilities. Artificial intelligence technology has significantly enhanced data 
processing and increased the capability of working as a pattern recognition system.(42)

Integrating AI is beneficial not only for processing imagery and tracking aircraft but also in producing 
predictive analytical information suitable for the dynamic environment of air traffic. This manuscript is based 
on the applications of AI in aircraft tracking using space-borne sensors and categorizing AI algorithms for air 
traffic surveillance. Artificial intelligence can improve monitoring capabilities from imagery data with some 
potential AI techniques. Prediction and simulations prove to be two major AI techniques that can determine 
the behaviour and type of an object using historical data. These two AI techniques have their significance in 
monitoring aircraft data with and without predictions for air traffic. AI methodologies follow either simulation 
principles or pattern recognition principles.

Machine Learning Algorithms
Modern machine learning techniques can be classified based on their capabilities. Supervised learning 

techniques allow systems to automatically learn to classify or forecast output values based on a set of input 
feature data.(50,53) Algorithms such as random forests, support vector machines, and various neural networks 
can be applied to this end. Recognition of different air or ground objects can be performed with the help of 
supervised learning techniques. Unsupervised learning, on the other hand, can learn to detect patterns without 
the guidance of a training dataset. Various deep-learning neural network techniques can be used for this 
purpose. There are many potential use cases for these techniques in airborne data processing, be it better data 
analysis or estimates of several parameters such as psychological factors.

At present, machine learning is largely used to automate the analysis of large datasets. Machine learning 
techniques have been used to provide more accurate traffic forecasts, improve passenger queue time and 
future passenger time-passed-by predictions, and energy cost and passenger density for efficient heating, 
ventilation, and air conditioning prediction. Several use cases of machine learning applications for typical 
aviation problems have now been observed. In one case, object detection has been used to detect and count 
thousands of static aircraft for research purposes on satellite imagery.(43,44,54,55) Convolutional neural networks 
have been applied for change detection in a dataset, allowing for faster, more automated digital surface model 
generation. While these developments are not focused entirely on traffic analysis, they speak to the potential 
of integrating machine learning models into existing technological paradigms to improve the capacity for air 
traffic management.

Deep Learning Models
Deep learning, also known as deep neural networks or hierarchical learning, is an advanced subset of 

machine learning that endeavours to simulate the human brain in making decisions(43,44,47,54–57). The artificial 
neural networks used in deep learning resemble biological neural networks in their ability to make intelligent 
and self-executable decisions based on available data. Deep learning models can analyze voluminous and 
complex datasets by creating intricate patterns to facilitate decision-making. This intelligent feature of deep 
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learning finds myriad applications in air traffic surveillance for images obtained from high-altitude pseudo-
satellite systems.(58)

The essential architecture of present-day deep learning models, including multi-layer perceptron, 
convolutional neural networks, and recurrent neural networks, is shown. Specifically, convolutional neural 
networks are proficient in extracting primitives from data such as images, and recurrent neural networks 
can retain previous information in generating data. Recently, deep learning has contributed to numerous 
astonishing breakthroughs, including the very first game-playing entity capable of defeating a professional 
human Go champion. Advancements and novel state-of-the-art results in deep learning for aerial monitoring 
via satellite imagery, remotely piloted aircraft systems, or armed unmanned aircraft systems are also being 
achieved. These aircraft systems update flight status by data linking to air traffic control systems for trajectory-
based operations.(59)

Although autopilots can perform tactical tasks such as vertical and horizontal flight control, air traffic control 
conducts strategic and pre-departure planning on all flights. Moreover, due to its numerous applications, the 
demand for remote sensing-based air traffic surveillance employing an AI model has significantly escalated. 
However, the major bottleneck in training deep learning architectures is the availability of a large dataset. It 
is also to be noted that these kinds of models require extensive use of data augmentation for training these 
models for satellite imagery, such as salt-and-pepper noise, Gaussian noise, Gaussian filters, data rotation, and 
flipping. Despite these advantages, deep learning models suffer from a few limitations, such as the requirement 
of extensive computational power for training and constrained interpretability when image portions contain 
irrelevant objects. For satellite big image monitoring, standard deep learning models available have been 
developed with the ability for object detection with limited datasets. Despite vigorous datasets obtained from 
different sensors, deep learning capabilities have transformed surveillance equipment.(45)

Literature from recent studies
Reconstructing the statistics of air traffic activity allows the assessment of the performance of the proposed 

methodology. It can be seen in tables that the actual number of flights was reduced in 2023 by almost 70 
% compared with that in 2019. However, the number of flights for which the network was able to find a 
corresponding flight in the satellite data on average is only 12 % lower. This empirical decrease is theoretical as 
it can be entirely attributed to the limited time when the measurements were taken. This is further supported 
by the fact that most civilian flights are intracontinental and would result in more flights per unit of air space 
when using satellite images in the daytime.(49,59,60)

The radius at which flights can be theoretically reconstructed is shown based on the historical distribution 
of the measured speeds. The average and standard deviation have been computed and displayed for reference. 
Most importantly, it can be seen that after day 45 of 2020 the number of flights has universally expanded up to 
the maximum radar range of 200 km. This result suggests that, by using satellite imagery, the range of air traffic 
surveillance can be surpassed both regionally and internationally. Additionally, the proposed method detects 
military flights, which are less prone to standard tracking methods. Such results can be contrasted with other 
deep learning and classical post-processing methods and utilized for improving air traffic management safety 
and efficiency. In fact, this closely follows an observed increase in contrails, vapor trails in the atmosphere 
from aircraft exhausts, in the absence of the majority of civilian flights during the COVID-19 lockdown, which 
is displayed.(61,62,63)

The seemingly homogeneous distribution of civilian flights away from major cities is an effect of the 
distribution of the Air Traffic Flow Management regulations that are displayed geographically. These graphical 
results further broaden the utility of the proposed method. Mainly, the proposed method is a major improvement 
in current air traffic tracking. While other commercial flight tracking applications are based on a combination of 
directed exchange of transponder information and extensive use of high-frequency radar systems, this method 
can be further developed into a framework capable of tracking all aircraft that are operating around the 
world. As accidents, and especially those involving terrorist attacks, are becoming more frequent as a result of 
intentional interception of the transponders, our tracking method offers an alternative. Finally, our methods 
and tracking tools will aid in finding aircraft during search missions within unmonitored oceanic flight space, as 
was the case for a previous incident. In that situation, our data can be compared with tracks of military aircraft 
that were assessed in reports but either never disclosed to the public or were declared as belonging to third-
party countries, which in turn guarantees the same flight paths are traced.(64)

Reconstructing the statistics of air traffic activity allows the assessment of the performance of the proposed 
methodology. It can be seen in tables that the actual number of flights was reduced in 2023 by almost 70 
% compared with that in 2019. However, the number of flights for which the network was able to find a 
corresponding flight in the satellite data on average is only 12 % lower. This empirical decrease is theoretical as 
it can be entirely attributed to the limited time when the measurements were taken. This is further supported 
by the fact that most civilian flights are intracontinental and would result in more flights per unit of air space 
when using satellite images in the daytime.
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The radius at which flights can be theoretically reconstructed is shown based on the historical distribution 
of the measured speeds. The average and standard deviation have been computed and displayed for reference. 
Most importantly, it can be seen that after day 45 of 2020 the number of flights has universally expanded up to 
the maximum radar range of 200 km. This result suggests that, by using satellite imagery, the range of air traffic 
surveillance can be surpassed both regionally and internationally(65). Additionally, the proposed method detects 
military flights, which are less prone to standard tracking methods. Such results can be contrasted with other 
deep learning and classical post-processing methods and utilized for improving air traffic management safety 
and efficiency. In fact, this closely follows an observed increase in contrails, vapor trails in the atmosphere 
from aircraft exhausts, in the absence of the majority of civilian flights during the COVID-19 lockdown, which 
is displayed.

The seemingly homogeneous distribution of civilian flights away from major cities is an effect of the 
distribution of the Air Traffic Flow Management regulations that are displayed geographically. These graphical 
results further broaden the utility of the proposed method. Mainly, the proposed method is a major improvement 
in current air traffic tracking. While other commercial flight tracking applications are based on a combination of 
directed exchange of transponder information and extensive use of high-frequency radar systems, this method 
can be further developed into a framework capable of tracking all aircraft that are operating around the 
world. As accidents, and especially those involving terrorist attacks, are becoming more frequent as a result of 
intentional interception of the transponders, our tracking method offers an alternative. Finally, our methods 
and tracking tools will aid in finding aircraft during search missions within unmonitored oceanic flight space, as 
was the case for a previous incident. In that situation, our data can be compared with tracks of military aircraft 
that were assessed in reports but either never disclosed to the public or were declared as belonging to third-
party countries, which in turn guarantees the same flight paths are traced.(65,66)

Case Studies
Case Study 1: Enhancing Real-Time Aircraft Tracking with AI & Machine Learning Overview: traditional 

air traffic monitoring relies heavily on radar and ground-based sensors, which have limited coverage over 
oceans and remote areas. AI-driven satellite imagery provides an alternative for real-time aircraft tracking.

Implementation: a global airline partnered with an AI research lab to implement deep learning models 
such as YOLO and Faster R-CNN for aircraft detection in satellite images. AI algorithms continuously analyze 
incoming satellite data, identifying aircraft positions in real time.

Results:
•	 Increased accuracy in aircraft detection by 87 % compared to conventional methods.
•	 Real-time tracking of flights over non-radar zones, reducing data gaps.
•	 Improved efficiency in air traffic management, leading to fewer flight delays.

Impact: AI-powered tracking enhances flight safety, reduces reliance on ground-based radar, and ensures 
seamless global air traffic monitoring.

Case Study 2: AI-Based Satellite Monitoring for Aviation Security
Overview: illegal or unauthorized flights pose security threats, especially in restricted airspace. AI-powered 

satellite surveillance enhances threat detection and response.
Implementation: a defense agency integrated AI-powered satellite image processing with anomaly detection 

systems to monitor unauthorized aircraft in restricted zones. The AI model identifies suspicious flight patterns 
and cross-references them with flight databases.

Results:
•	 Detected 25 % more unauthorized flights compared to traditional monitoring.
•	 Faster response times by air defense teams, reducing security breaches.
•	 Improved tracking of smuggling routes and unauthorized aircraft operations.

Impact: AI-enhanced surveillance strengthens national security by providing real-time alerts on potential 
threats in the airspace.

Case Study 3: Reducing Airspace Congestion Using AI & Big Data
Overview: congested airspace leads to increased flight delays, fuel consumption, and operational costs. AI-

driven air traffic management optimizes flight routes and reduces congestion.
Implementation: a major international airport deployed AI algorithms integrated with satellite data and big 

data analytics to predict air traffic density and optimize flight routes. AI models analyzed historical flight paths, 
weather conditions, and satellite imagery.

Results:
•	 Reduced flight congestion by 30 %, improving airport efficiency.
•	 15 % decrease in fuel consumption due to optimized flight paths.
•	 Minimized risk of mid-air collisions in high-traffic zones.
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Impact: AI-powered airspace management leads to smoother flight operations, reduced environmental 
impact, and cost savings for airlines.

Case Study 4: AI-Powered Disaster Response & Search Operations
Overview: when aircraft go missing over remote areas, traditional search-and-rescue missions face challenges 

due to vast search zones and limited radar coverage. AI-driven satellite surveillance enhances response efforts.
Implementation: following a missing aircraft incident, an aviation authority used AI to process satellite 

imagery and detect potential wreckage locations. AI models trained on historical crash site data rapidly 
identified anomalies in terrain patterns.

Results:
•	 Search area narrowed by 60 %, allowing faster rescue operations.
•	 Increased accuracy in detecting debris, reducing false alarms.
•	 Enhanced coordination between emergency response teams.

Impact: AI-driven satellite monitoring significantly improves aviation disaster response, reducing search 
times and increasing survival rates in emergencies.

Case Study 5: Cost-Effective Air Traffic Surveillance in Remote Regions
Overview: many regions lack air traffic radar coverage, making satellite-based surveillance a cost-effective 

alternative for tracking flights over remote areas.
Implementation: a developing nation deployed AI-powered satellite monitoring as an alternative to 

expensive ground-based radar systems. AI detected aircraft movements using high-resolution satellite images 
and transmitted real-time updates to air traffic control.

Results:
•	 50 % cost reduction compared to traditional radar installations.
•	 Coverage extended to remote and oceanic regions previously unmonitored.
•	 Enhanced safety for commercial and private aircraft.

Impact: AI-powered satellite surveillance offers an affordable solution for global air traffic monitoring, 
benefiting developing nations and remote airspaces (figure 4).

Figure 4. AI for satellite communication(42,43)

Case Study 6: Future Trends in Autonomous Air Traffic Management
Overview: as air traffic continues to grow, AI-powered autonomous systems are emerging to manage airspace 

efficiently, reducing human workload and errors.
Implementation: a research institute developed an AI-powered autonomous air traffic management system 
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that integrates satellite data, ADS-B signals, and IoT sensors to coordinate aircraft movements without human 
intervention.

Results:
•	 40 % reduction in human workload for air traffic controllers.
•	 Automated conflict detection and resolution, preventing mid-air collisions.
•	 Improved flight efficiency with self-optimized routes based on AI predictions.

Impact: Autonomous AI-driven air traffic management is the future of aviation, promising safer, more 
efficient, and self-regulated global airspace.

Conclusions
These six case studies highlight the ‘‘transformative power of AI and satellite-based monitoring’’ in aviation. 

From ‘‘enhancing security to reducing congestion’’ and ‘‘improving disaster response’’, AI is revolutionizing air 
traffic surveillance worldwide.

Application in Emergency Response
Disaster management represents a critical societal concern, focusing on the rescue of individuals in distress 

and the minimization of damage inflicted by catastrophic events. The deployment of satellite imagery analysis 
is essential for precise damage evaluation and the formulation of effective emergency response strategies.
(25,67,68) Additionally, real-time air traffic data can provide significant insights for extensive surveillance efforts 
in emergency response and catastrophe monitoring. Such data encompasses vital information, including the 
ramifications of the disaster on air traffic, the status of secure zones at airports, the evacuation protocols for 
aircraft based on their respective airlines, flight cancellation updates, and the operational status of ground 
activities. These resources play a crucial role in reducing the time required to locate manageable resources 
amidst an escalating spread of disease and constrained economic support due to political factors. Furthermore, 
cost-effective public research drones can be efficiently employed to relay near real-time surveillance data 
when utilized appropriately. In the event of a hurricane outbreak, it is crucial to allocate sufficient time for 
safety, as the objects requiring attention are often limited. This information underscores the significance of 
harnessing such critical data, particularly concerning air traffic, in managing disaster responses effectively.(69)

In addition to the significance of this information, the processing of satellite images utilizing advanced 
machine learning techniques presents notable challenges. The typical duration for processing high-resolution 
satellite images may extend over several days. In instances of an outbreak or disaster, the constraints imposed 
by time, alongside the inability to access payment options, may lead to the forfeiture of access to commercial 
systems. Nonetheless, the warp-translation method of deep learning techniques introduced in this research 
permits the seamless and automated co-registration and masking of disparate satellite images acquired at 
different times by various sensors. With the aid of simultaneous cloud-based implementation, the average 
processing duration for a single high-resolution satellite image is reduced to under 10 seconds.(70,71) For urgent 
response requirements, satellite images can even be processed on the same day using materials from public 
or government-owned satellites. In addition to capturing images pre- and post-disaster, the methodologies 
developed herein are also applicable to various change detection and regularly updated surveillance scenarios, 
including monitoring refugee movements, alterations at nuclear test sites, and other specified needs.

Monitoring Air Traffic Patterns
In this section, we provide illustrations of experiments conducted utilizing substantial quantities of air 

traffic tracking data. These experiments were centered on the observation of traffic within specific scenarios, 
functioning as baseline assessments to evaluate the efficacy of the integrated access mechanism for the artificial 
intelligence system, while also demonstrating its operational scale and performance.(24)

Traffic Flow Pattern
This investigation of the East China Sea region reveals the substantial tailwind influencing the traffic patterns 

of the East-West Corridor (EWC) and the potential strategies for Korean air carriers to mitigate flight delays. 
The graph on the left illustrates the average weekly profile of air traffic density within the 125E air corridor. 
Conversely, the graph on the right presents the average ground speed profile for flights traversing the identical 
125E air corridor, with the data representing flights that have been averaged. An analysis of both graphs 
indicates that during the early morning hours over the Asian continent, troughs of an eastbound jet stream have 
formed, producing significantly stronger-than-average tailwinds. This phenomenon is especially pronounced 
during the winter months. Consequently, the air traffic originating from Japan, South Korea, Hong Kong, and 
Taiwan enroute to the Americas adopts an optimal great circle route, passing just north of the islands of Iwo 
Jima, Rota, and Tinian, before making landfall in the Aleutians on the northwestern Pacific coast of Canada.
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Figure 5. Air traffic pattern(22,72)

Future Directions
The emergence of artificial intelligence and machine learning revolutionized many fields of operational 

interest, including satellite imagery processing. The emergence of these trends and the integration of nano- 
and microelectronics in satellite technology, coupled with the enhancement of sensors, has resulted in satellites 
having the capability of field of view and quality of coverage needed at low densities required for air traffic 
situation awareness at low cost. The future of AI to enable ubiquitous, high-frequency, high-quality surveillance 
of the global traffic system has the potential to assist aviation in achieving its optimal safety performance. By 
combining data sources processed by satellite data, AI surveillance can be conducted down to 5 NM, and with 
multimodal data sources, tracking can be correlated across different surveillance domains.(57,73)

Several interesting possible future directions of development were identified from the day. With advances in 
nanotechnology driving down the cost of satellite hardware and more capable, suitable sensors on the horizon, 
the aviation industry could benefit in at least two fundamental areas should a practical solution be realized. 
First, ubiquitous, live, high-frequency surveillance could enable a range of efficiencies for the industry, while 
new developments and accurate image capturing could add a level of safety assurance, such as monitoring 
the integrity of the flight paths versus the tire track measured drawing and other daily life fields. However, 
the road to discovery is filled with many technological, ethical, legal, and operational challenges, including 
collaborative innovation involving the testing of new hardware for aviation applications.(54) We welcome your 
constructive input on the discussion about whether the idea presented can happen and what the challenges 
and new technology will be to further research and investment in the future. For universal information, the 
ideas presented are conferred to the public regulators and air navigation authorities to develop the network to 
incorporate it into the ATM concept.

Current Technologies and Innovations
This chapter has provided insight into the status quo of satellite and aerial surveillance and has examined 

a variety of approaches. AI provides a cost-effective approach to increase the capacity of the ATC system. 
With modern, “lateral-thinking” AI algorithms, even the use of less advanced satellites will still result in huge 
improvements in ADS-B signal accuracy and quantity. Furthermore, using advanced machine learning techniques 
and “big data” analytics can greatly improve the outcomes of the use of any satellite. Machine learning can also 
be used to predict future unclassified satellite capabilities. Significantly, AI can be used for free tracking data 
that is detected between the occasional gaps in ADS-B coverage. Performance can be ascertained using mixed 
vector results evaluating the performance of the various change detection algorithms for widespread checks 
of the routes.

Future Trends and Innovations 
These emerging trends in AI relate back to our original need of enhancing the capabilities of air traffic 
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surveillance. In lieu of advanced detection algorithms, the future of air traffic surveillance relies on predictors of 
satellite technologies and the integration of AI. With the declassification of satellite technology, more countries 
are anticipated to have the capability to launch satellites. The space sector is also moving toward very large 
constellations and mega-constellations in low Earth orbit, the use of robots for autonomously maintaining 
satellites, and the in-orbit satellite servicing for refueling and repair, and even remote artificial intelligence-
based self-healing satellites. These trends may promote a shift away from ground station monitoring of 
satellite data and into a computerized environment. In addition, there is benefit in continuous monitoring 
of detection speed and accuracy in tracking fixed-wing aircraft. As new changes are made, newer satellites 
are launched and international regulations are adjusted, a greater emphasis on comprehensive AI is needed. 
This may encourage collaboration between tech companies, governmental space agencies, and international 
coordinating organizations. In line with trend monitoring, it is also likely that regulation of policy will impact 
the speed of the adoption of new technology. With every new system, the satellite system is reliant on a new 
field of expertise that would require the training and education of new members.

Advancements in Satellite Technology
Today, many nations deploy their own remote sensing capabilities using Earth observation and navigational 

satellites to monitor their airspace. Satellite imagery technology is currently in a state of rapid evolution. A new 
generation of Earth-observing satellites is equipped with sensors that incorporate enhanced imaging resolution 
and adaptive data processing capabilities. In addition, big internet companies and start-up space companies 
are actively investing in the construction of satellite constellations that would provide near real-time high-
resolution images suitable for airborne and maritime traffic surveillance. The constellation of surveillance 
satellites, coupled with well-designed adaptive data processing techniques, can obviate the delay associated 
with the downlink and intervention of human-in-the-loop operations, providing enough information to monitor 
in-flight aircraft and to take appropriate measures to ensure aviation safety against any contingency (figure 6).

Figure 6. Components of technovation(74)

With the anticipated benefits offered by space-based air traffic surveillance, the integration of satellite-
based airspace surveillance data with ground-based data becomes a new challenging field. The current 
development has opened the era of integrating space-based air traffic surveillance with other sources of data 
to offer the most effective means of achieving a more holistic view of global aviation. However, the tracking 
of all expected aircraft from space is an enormous data handling task and requires very powerful ground-based 
processing and analytics. Extracting useful and meaningful traffic information from received surveillance data 
is a difficult task that will challenge the performance of ground systems for data processing and efficiency. 
Analytical tools must be in place to manage the overload of data received from aircraft position reports and 
other related surveillance data, and to minimize the amount of hardware required to operate space-based air 
traffic surveillance.(42) The potential environmental impact of launching satellites in large numbers into orbit 
is also quite high, and it is better practice to also consider other techniques for monitoring air traffic, such as 
developing more efficient and sustainable use of existing ground and airborne equipment, rather than launching 
a large number of satellites as part of the required airspace access management.

Potential Applications in Aviation Industry
AI-powered satellite imagery processing holds great potential for both the aviation industry and the 

larger global service transportation sector. In the short-term future, organizations can utilize insights from 
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AI-powered imagery processing to conduct predictive maintenance, optimize routes considering congestion 
and the environment, monitor aircraft for security purposes, noise pollution monitoring, and cabin cleaning 
schedules, provide destination recommendations to passengers, and monitor urban traffic intersection activity 
for a better cabbing experience.(53) The aviation industry can use these operational insights from AI and satellite 
imagery analysis to harness and depend upon data for operations and better decision-making rather than 
only using rule-based systems. Satellite-based data can be integrated into existing air traffic control systems 
at centralized locations, and gap modelling can be extended to add additional air traffic frequency flights 
between two locations to develop potential future air traffic in China and Southeast Asia.

New, previously unavailable datasets in real-time for in-flight tracking or modelling can be leveraged by 
addressing radar malfunctions in various developing nations. Larger data requests require partnerships between 
technology firms, government agencies, and public and private transportation service companies (figure 7). 
Subcontracts, licenses, and retainer agreements are established with large and small aviation and beyond-visual 
line-of-sight drone companies to analyze their raw data for business intelligence, reporting, and compliance 
needs. AI-powered satellite imagery processing does possess the potential to disrupt the aviation industry. In 
addition to proposed applications, future possible news channels may display decreased itineraries caught in 
real-time data processing, not only adding complementary services to existing air traffic websites but also 
offering a unique combination of air traffic monitoring and chance-taking control.(52,53,74) Legal and economic 
frameworks are required for accelerating road traffic and satellite image processing solutions.

Figure 7. AI in space exploration(44)

Limitations of the Study
Data constraints: as mentioned before, the constraints in available data could only be overcome by opting 

for very low-resolution preprocessed satellite imagery, and therefore decreasing the amount of detail present 
in our dataset. Algorithm constraints: processing the huge amounts of data, we had to downsize our dataset 
and opted for a Random Forest classifier due to better performance in terms of accuracy, considering also the 
temporal modulation of flight behaviour. Overfitting could occur since copies of the same flight data were used 
for both training and testing. Also, the algorithm, implemented in optimizing and minimizing dimensions, could 
be prone to bias when detecting a few flights or when dealing with spatial data that is rare. Criticism for future 
research: this research is conducted under the assumption that satellite imagery is unbiased. There are two 
potential biases we see that could possibly affect our results in the form of ambiguity. Although not discussed in 
previous literature, ambiguity in satellite imagery used in this study or human error when labeling an aircraft 
could affect our results.

Therefore, in future research, one anticipation is repeating improvements and conducting an inter-
rater reliability analysis between expert researchers disclosing the satellite imagery data and the domestic 
commercial and domestic militarized aircraft tracking in the airspace. Trends and distribution of results 
interpretation: the age and allocation of flight activities are not within the scope of this research because our 
study concentrated on tracking flights and aircraft decentralized by time. Moreover, we could not predict the 
extent of security and defence during air traffic surveillance, as well as their trends in the country, due to the 
limitations in capabilities and algorithms. The reason for the large number of workouts detected is technical, 
given the spatial location; the furthest urban area in America is traversing from one suburban area in Europe. 
For future studies, it is recommended to conduct convolutional neural networks with convolutional Long Short-
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Term Memory that should process and decide on the temporal features of flights, located by longitude and 
latitude, far and near to urban areas, as well as learning capability.

The integration of algorithms and satellite surveillance images offers the potential to catch any unusual 
activities or airspace changes over the ocean and in remote areas. However, various technical, operational, 
and regulatory limitations must be addressed. This chapter reveals the underlying limitations after an in-depth 
investigation. It only deals with the scope of these limitations. A comprehensive investigation into the concept, 
design, and development of AI technology for global traffic surveillance using satellite imagery has so far been 
documented. Despite its potential, AI and machine learning algorithms have inherent boundaries, especially 
when they are based on satellite images. The following outlines the limitations related to AI-powered satellite 
imagery processing in the context of surveillance, as performed in several case studies.

Current satellite images are affected by degraded data in the original digital image. Data from the Virgin 
Islands in the Caribbean are obtained to show how limited data can influence synthetic images’ photogrammetry 
analysis and position solutions from AI algorithms and their consequences. To run AI algorithms, data must be 
well-coordinated, and accurate and precise data are essential in every surveillance process. Unsuitable AI 
training may lead to biased outcomes when evaluating surveillance images, resulting in incorrect reporting and 
potentially unfair decisions. Furthermore, AI object recognition from electronic images may raise individual 
rights and privacy concerns, increasing the likelihood of drastically more surveillance satellites being destroyed 
in the future. Ethical evaluation and artificial intelligence studies on satellite surveillance rules, activities, 
privacy, and security are lacking. Viewing images in the public domain or using commercially available satellite 
images is highly subjective concerning ethics. There are numerous social and regulatory regulations in this 
regard, yet the problem persists. To the best of my knowledge, ethics and the use of AI are not typically 
addressed in this manner in satellite surveillance operations.

CONCLUSIONS
The integration of AI-powered satellite imagery processing in global air traffic surveillance represents a 

transformative advancement in aviation technology. This study developed an air traffic surveillance system 
leveraging multiple data inputs, each offering distinct advantages in computational efficiency and processing 
time. The proposed system, currently in its experimental stage, demonstrates the applicability of Artificial 
Intelligence (AI) and Machine Learning (ML)—two of the most prominent Industry 4.0 technologies—in air traffic 
monitoring. The results obtained highlight the potential for AI-driven surveillance systems to complement 
and enhance traditional radar- and ADS-B-based tracking, providing valuable insights that stakeholders can 
adopt to improve air traffic management. Monitoring aircraft efficiently is critical for ensuring safe, secure, 
and optimized air traffic operations. Advancements in real-time observation technologies now enable more 
accurate and immediate decision-making, not only by human air traffic controllers but also by autonomous AI-
based monitoring systems. As the aviation industry continues to evolve, all stakeholders—air traffic controllers, 
airlines, regulatory bodies, and technology providers—must actively integrate AI-powered solutions to enhance 
situational awareness, reduce airspace congestion, and improve overall operational efficiency. This includes 
both air-to-air and air-to-ground surveillance strategies, ensuring comprehensive coverage of global airspace.

The proposed air traffic surveillance system integrates image processing, object detection, and deep learning 
with existing radar and ADS-B data, offering a hybrid approach to aircraft monitoring. As a prototype, it serves 
as a foundation for further development, aiming to complement existing air traffic surveillance frameworks 
while initiating new discussions in the aviation surveillance community. The ability to process satellite imagery 
for real-time aircraft detection and tracking enhances current methodologies, allowing for better coverage of 
remote and non-radar regions. Despite the promising results achieved in this study, several technical limitations 
were identified. One key challenge is the system’s performance under adverse weather conditions and 
nighttime operations. To ensure continuous 24/7 monitoring, future iterations of this surveillance system must 
incorporate infrared camera sensors and radar-based vision techniques, allowing reliable aircraft detection in 
low-visibility conditions. Additionally, improvements in object detection accuracy and AI model efficiency will 
further refine the system’s effectiveness. Moving forward, continued research and technological advancements 
will be essential to fully operationalize AI-powered satellite imagery for global air traffic surveillance. The 
insights gained from this study provide a solid foundation for future developments, ensuring that AI-driven air 
traffic management becomes a cornerstone of next-generation aviation safety and efficiency. By leveraging 
AI, satellite data, and automation, air traffic surveillance can evolve into a more adaptive, predictive, and 
intelligent system, paving the way for a safer and more connected global airspace.

RECOMMENDATIONS
This study has demonstrated that advanced machine learning techniques can be used to help manage air 

traffic logistics in areas not equipped with traditional traffic surveillance infrastructure by using inputs from 
machine vision techniques to build a multi-sensor aerial surveillance picture base. Advanced computing and AI 
techniques in combination could be developed further to offer better analysis and decision-making capabilities 

 LatIA. 2025; 3:80  16 

ISSN: 3046-403X



in near real-time. Combined with policy adaptations to allow the remote operation of commercial UAVs by 
licensed pilots after some further technological and psychological barriers are overcome, the technology 
discussed could offer capacity benefits in aerial logistics in heavily built-up areas such as urban environments or 
manufacturing and logistics facilities to name a few examples. The potential contribution of this research is the 
exploration of using a surveillance solution that is not tied to physical infrastructure and can work with relatively 
modest surveillance resources. The approach might be used to develop a surveillance picture in environments 
where there are other sensor inputs available to complement a light, low-risk imaging station. Deployment 
of advanced, automated, machine learning techniques in the kind of minimally equipped surveillance system 
discussed will likely require a little more breakthrough progress in outer research areas, for example, the 
development of collaborative information infrastructure to enable meaningful sharing of large amounts of 
complex data across national borders or industrial estates.

Therefore, the results set a direction for the continued advance of these non-core surveillance systems 
when used in conjunction with other sensor systems. The kind of advanced mapping of picture feature spaces 
might also assist in other work that seeks to correlate data associated with different sensors. For example, 
the analysis might correlate with an automated diagnosis of UAVs, in a remote health check, with in-field 
surveillance of the same UAV. Coordination between manned and unmanned aviation systems is particularly a 
policy decision that is likely to occur in stages to enable continuous adaptation to proven capabilities over time 
while dealing with potential safety and security concerns. This study presents an initial step for the kind of 
traffic surveillance infrastructure needed to operate commercial UAVs more autonomously over time.
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