Design and implementation of an IoT monitoring system for the optimization of solar stills for water desalination
DOI:
https://doi.org/10.62486/latia2024101Keywords:
Solar desalination, Internet of Things (IoT), Solar still efficiency, Remote monitoringAbstract
The project "Design and Implementation of an IoT Monitoring System for the Optimization of Solar Distillers in Water Desalination" sought to improve the efficiency of desalination in La Guajira, a region with critical water scarcity. The objective was to develop an IoT system to optimize solar stills, offering a sustainable solution. A prototype solar still with IoT monitoring was built. The study included the creation of circuits to integrate sensors and an HTML dashboard to visualize real-time variables, such as internal and external temperatures, humidity, and water level in the basin, facilitating the calculation of efficiency. The IoT monitoring system proved to be effective in increasing efficiency and providing valuable data for design decisions, marking a step towards water autonomy.
References
Abdenacer, Pr. K., & Nafila, S. (2007). Impact of temperature difference (water-solar collector) on solar-still global efficiency. Desalination, 209(1-3 SPEC. ISS.), 298–305. https://doi.org/10.1016/j.desal.2007.04.043 DOI: https://doi.org/10.1016/j.desal.2007.04.043
Alshehri, M., Bhardwaj, A., Kumar, M., Mishra, S., & Gyani, J. (2021). Cloud and IoT based smart architecture for desalination water treatment. Environmental Research, 195. https://doi.org/10.1016/j.envres.2021.110812 DOI: https://doi.org/10.1016/j.envres.2021.110812
Benghanem, M., Mellit, A., & Emad, M. (2022). IoT-based performance analysis of hybrid solar heater-double slope solar still. WATER SUPPLY, 22(3), 3027–3043. https://doi.org/10.2166/ws.2021.414 DOI: https://doi.org/10.2166/ws.2021.414
Benghanem, M., Mellit, A., Emad, M., & Aljohani, A. (2021). Monitoring of Solar Still Desalination System Using the Internet of Things Technique. ENERGIES, DOI: https://doi.org/10.3390/en14216892
a. 14(21). https://doi.org/10.3390/en14216892 DOI: https://doi.org/10.3390/en14216892
Bisaga, I., Puzniak-Holford, N., Grealish, A., Baker-Brian, C., & Parikh, P. (2017). Scalable off-grid energy services enabled by IoT: A case study of BBOXX SMART Solar. ENERGY POLICY, 109, 199–207. DOI: https://doi.org/10.1016/j.enpol.2017.07.004
a. https://doi.org/10.1016/j.enpol.2017.07.004 DOI: https://doi.org/10.1016/j.enpol.2017.07.004
Burbano, A. M. (2014). Evaluation of basin and insulating materials in solar still prototype for solar distillation plant at kamusuchiwo community, high guajira. Renewable Energy and Power Quality Journal, 1(12), 547–552. https://doi.org/10.24084/repqj12.395 DOI: https://doi.org/10.24084/repqj12.395
Chakravarthy, M. R. D., Gopalakannan, V., Prasanth, S. V, & Yogeshwaran, V. (2022). Treatment of Brackish Water Using Acrylic Solar Still with Concentrating Dish. Indian Journal of Environmental Protection, 42(3), 350–356. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85131233893&partnerID=40&md5=17c5ce0cbc8c3c59b637dbc9731eba4f
Dellicompagni, P., & Franco, J. (2019). Potential uses of a prototype linear Fresnel concentration system. Renewable Energy, 1044–1054. https://doi.org/10.1016/j.renene.2018.10.005 DOI: https://doi.org/10.1016/j.renene.2018.10.005
Elashmawy, M. (2017). An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination, 411, 1– DOI: https://doi.org/10.1016/j.desal.2017.02.003
a. 8. https://doi.org/10.1016/j.desal.2017.02.003 DOI: https://doi.org/10.1016/j.desal.2017.02.003
Essa, F. A., Abdullah, A., Majdi, H. S., Basem, A., Dhahad, H. A., Omara, Z. M., Mohammed, S. A., Alawee, W. H., Ezzi, A. A., & Yusaf, T. (2022). Parameters Affecting the Efficiency of Solar Stills—Recent Review. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710668 DOI: https://doi.org/10.3390/su141710668
Gil, J. D., Munoz, M., Roca, L., Rodriguez, F., & Berenguel, M. (2019). An IoT based control system for a solar membrane distillation plant used for greenhouse irrigation. Global IoT Summit, GIoTS 2019 - Proceedings. https://doi.org/10.1109/GIOTS.2019.8766370 DOI: https://doi.org/10.1109/GIOTS.2019.8766370
Khechekhouche, A., Manokar, A. M., Sathyamurthy, R., Essa, F. A., Sadeghzadeh, M., & Issakhov, A. (2021). Energy, Exergy Analysis, and Optimizations of Collector Cover Thickness of a Solar Still in El Oued Climate, Algeria. International Journal of Photoenergy, 2021. DOI: https://doi.org/10.1155/2021/6668325
a. https://doi.org/10.1155/2021/6668325 DOI: https://doi.org/10.1155/2021/6668325
Meukam, P., Njomo, D., Gbane, A., & Toure, S. (2004). Experimental optimization of a solar still: Application to alcohol distillation. Chemical Engineering and Processing: Process Intensification, 43(12), 1569–1577. https://doi.org/10.1016/j.cep.2004.02.007 DOI: https://doi.org/10.1016/j.cep.2004.02.007
Muñoz, M., Gil, J. D., Roca, L., Rodríguez, F., & Berenguel, M. (2020). An iot architecture for water resource management in agroindustrial environments: A case study in almería (Spain). Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030596 DOI: https://doi.org/10.3390/s20030596
Naciones Unidas. (2017). Objetivos de Desarrollo Sostenible Manual de referencia Sindical sobre la Agenda 2030 para el Desarrollo Sostenible.
Paul, B., Agnihotri, S., Kavya, B., & Tripathi Prachi and Babu, N. C. (2022). Sustainable Smart Aquaponics Farming Using IoT and Data Analytics. JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 15(1). DOI: https://doi.org/10.4018/JITR.299914
a. https://doi.org/10.4018/JITR.299914 DOI: https://doi.org/10.4018/JITR.299914
Sales, M. T. B. F. (2016). Solar powered desalination system using Fresnel lens. In DOI: https://doi.org/10.1088/1757-899X/162/1/012002
a. K. K. (Ed.), IOP Conference Series: Materials Science and Engineering (Vol. 162, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1757- 899X/162/1/012002
Sandhu, M. M., Khalifa, S., Jurdak, R., & Portmann, M. (2021). Task Scheduling for Energy-Harvesting-Based IoT: A Survey and Critical Analysis. IEEE INTERNET OF THINGS JOURNAL, 8(18), 13825–13848. DOI: https://doi.org/10.1109/JIOT.2021.3086186
a. https://doi.org/10.1109/JIOT.2021.3086186 DOI: https://doi.org/10.1109/JIOT.2021.3086186
Singh, D. B., & Tiwari, G. N. (2017a). Exergoeconomic, enviroeconomic and productivity analyses of basin type solar stills by incorporating N identical PVT compound parabolic concentrator collectors: A comparative study. Energy Conversion and Management, 135, 129–147. https://doi.org/10.1016/j.enconman.2016.12.039 DOI: https://doi.org/10.1016/j.enconman.2016.12.039
Singh, D. B., & Tiwari, G. N. (2017b). Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: A comparative study. Solar Energy, 142, 144– DOI: https://doi.org/10.1016/j.solener.2016.11.047
a. 158. https://doi.org/10.1016/j.solener.2016.11.047 DOI: https://doi.org/10.1016/j.solener.2016.11.047
Sivakumar, V., & Ganapathy Sundaram, E. (2013). Improvement techniques of solar still efficiency: A review. Renewable and Sustainable Energy Reviews, 28, 246– DOI: https://doi.org/10.1016/j.rser.2013.07.037
a. 264. https://doi.org/10.1016/j.rser.2013.07.037 DOI: https://doi.org/10.1016/j.rser.2013.07.037
Yousefi, H., Aramesh, M., & Shabani, B. (2021). Design parameters of a double- slope solar still: Modelling, sensitivity analysis, and optimization. Energies, DOI: https://doi.org/10.3390/en14020480
a. 14(2). https://doi.org/10.3390/en14020480 DOI: https://doi.org/10.3390/en14020480
Published
Issue
Section
License
Copyright (c) 2024 Roger David Pimienta Barros (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.