Color in images: a machine vision approach to the measurement of CIEL*a*b* coordinates in bovine loins

Authors

  • Olga Lucía Torres Vargas Universidad del Quindío. Author
  • Mateo Valencia Buitrago Universidad del Quindío. Author

DOI:

https://doi.org/10.62486/latia2024103

Keywords:

image analysis, beef, colorimeter, artificial vision system

Abstract

Electronic machine vision systems bring together a set of technologies and techniques used to capture, process and analyze images to perform a specific task, such as object or measurement pattern recognition. These systems rely on image processing and machine learning algorithms to interpret visual information. Therefore, the objective of this research was the construction of an electronic machine vision system (SVA) for color analysis in bovine (longisimus dorsi) loins based on the CIEL*a*b* color space. The VAS implementation was carried out using the programming language Python
3.9 programming language and the color parameters obtained were compared with those obtained on a Minolta CR-400 colorimeter (CM). Both systems were synchronized to provide the user with information about the color coordinates in the samples of loins stored for 6 days at 4°C. The results obtained showed no significant differences. The results obtained showed no significant differences in the values of the L* parameter, while b* and a* showed significant differences during the storage time of the loins. These results are attributed to the oxidation process of the myoglobin and to factors such as breed, feeding and slaughtering process of the cattle, which affect the color of the samples. The results obtained indicate that VAS could be used for the determination of color during the storage of beef loins in real time, offering a non-invasive and low-cost solution to the actors in the meat chain.
Keywords: image analysis, beef, colorimeter, artificial vision system. 

References

Altmann, B. A., Gertheiss, J., Tomasevic, I., Engelkes, C., Glaesener, T., Meyer, J., Schäfer, A., Wiesen, R., & Mörlein, D. (2022). Human perception of color differences using computer vision system measurements of raw pork loin. Meat science, 188, 108766. https://doi.org/10.1016/j.meatsci.2022.108766 DOI: https://doi.org/10.1016/j.meatsci.2022.108766

Anilkumar, K. K., Manoj, V. J., & Sagi, T. M. (2021). Efficacy of CIEL*a*b* and cmyk color spaces in leukemia image analysis: a comparison by statistical techniques. Biomedical Engineering: Applications, Basis and Communications, 33(06), 2150042. http://dx.doi.org/10.4015/S1016237221500423. DOI: https://doi.org/10.4015/S1016237221500423

Arsalane, Assia & Klilou, Abdessamad & Noureddine, El Barbri & Abdelmoumen, Tabyaoui. (2020). Artificial vision and embedded systems as alternative tools for evaluating beef meat freshness. 1-6. 10.1109/ICOA49421.2020.9094503. DOI: https://doi.org/10.1109/ICOA49421.2020.9094503

Castellanos Tolosa, N y Sánchez Jiménez, M. (2022). Desarrollo de carne de hamburguesa a base de harina de grillo. Universidad de los Andes. Disponible en: http://hdl.handle.net/1992/55654.

Girolami, A., Napolitano, F., Faraone, D., & Braghieri, A. (2013). Measurement of meat color using a computer vision system. Meat science, 93(1), 111–118. https://doi.org/10.1016/j.meatsci.2012.08.010. DOI: https://doi.org/10.1016/j.meatsci.2012.08.010

Larraín, R., Schaefer, D., Reed, J. (2008). Use of digital images to estimate CIE color coordinates of beef. Food Research International, 41(4), 380-385. DOI: 10.1016/j.foodres.2008.01.002. DOI: https://doi.org/10.1016/j.foodres.2008.01.002

Modzelewska-Kapituła, M., & Jun, S. (2022). The application of computer vision systems in meat science and industry–A review. Meat Science, 192, 108904. DOI: 10.1016/j.meatsci.2022.108904. DOI: https://doi.org/10.1016/j.meatsci.2022.108904

Nasiri, A., & Mohi, K. (2021). A machine vision-based system for measuring the chromatic parameters of bell pepper using artificial neural networks.

Parra-Bracamonte, G. M., López-Villalobos, N., Vázquez-Armijo, J. F., Magaña-Monforte,

J. G., Martínez-González, J. C., & Moreno-Medina, V. R. (2021). Perspectivas Del Consumidor Mexicano Sobre La Calidad De La Carne De Bovino. Perspectives Of Mexican Consumer on Beef Quality. Tropical and Subtropical Agroecosystems, 24, DOI: https://doi.org/10.56369/tsaes.3702

DOI: http://dx.doi.org/10.56369/tsaes.3702. DOI: https://doi.org/10.56369/tsaes.3702

Pérez-Álvarez, J. A.; Fernández-López, J.; Sayas-Barberá, M. E.; Cartagena-García, R. (1998). Caracterización de los parámetros de color de diferentes materias primas usadas en la industria cárnica. Eurocarne 63, 115-122

Salueña, B. H., Gamasa, C. S., Rubial, J. M. D., & Odriozola, C. A. (2019). CIELAB color paths during meat shelf life. Meat science, 157, 107889. DOI: 10.1016/j.meatsci.2019.107889. DOI: https://doi.org/10.1016/j.meatsci.2019.107889

Santos, M. D., Castro, R., Delgadillo, I., & Saraiva, J. A. (220). Improvement of the refrigerated preservation technology by hyperbaric storage for raw fresh meat. Journal of the Science of Food and Agriculture, 100(3), 969-977. DOI: 10.1002/jsfa.10083. DOI: https://doi.org/10.1002/jsfa.10083

Sanmartín, P., Fuentes, E., Serrano, M., & Prieto, B. (2021). Methodological aspects for the determination of color in soil-plant relationship studies.

Sun, X., Young, J., Liu, J. H., & Newman, D. (2018). Prediction of pork loin quality using online computer vision system and artificial intelligence model. Meat science, 140, 72–77. https://doi.org/10.1016/j.meatsci.2018.03.005. DOI: https://doi.org/10.1016/j.meatsci.2018.03.005

Wu, D., Sun, D. (2013). Colour measurements by computer vision for food quality control A review. Trends in Food Science and Technology, 29(1), 5-20. https://doi.org/10.1016/j.tifs.2012.08.004. DOI: https://doi.org/10.1016/j.tifs.2012.08.004

Wyszecki, G., & Stiles, W. S. (2000). Color science. Concepts and methods, quantitative data and formulae Jonh Wiley and Sons, Inc Second.

Zaukuu, J. L. Z., & Tsyawo, E. C. (2024). Rapid and non-destructive detection of ponceau 4R red colored pork. Meat Science, 209, 109400. 10.1016/j.meatsci.2023.109400. DOI: https://doi.org/10.1016/j.meatsci.2023.109400

Published

2024-07-27

Issue

Section

Original

How to Cite

1.
Torres Vargas OL, Valencia Buitrago M. Color in images: a machine vision approach to the measurement of CIEL*a*b* coordinates in bovine loins. LatIA [Internet]. 2024 Jul. 27 [cited 2025 Aug. 17];2:103. Available from: https://latia.ageditor.uy/index.php/latia/article/view/103