Classification of tomato ripeness in the agricultural industry using a computer vision system

Authors

  • Mateo Valencia Buitrago Universidad del Quindío, Ingeniería Electrónica. Facultad de Ingeniería. Colombia. Author
  • Olga Lucía Torres Vargas Universidad del Quindío, Ingeniería de Alimentos, Instituto Interdisciplinario de las Ciencias. Colombia. Author

DOI:

https://doi.org/10.62486/latia2024105

Keywords:

image analysis, CIEL*a*b*, spectrophotometer, machine vision system, tomato

Abstract

Machine vision systems (SVA) occupy an important place in the field of food and agriculture, these techniques are performed in situ, are efficient, non-invasive, time-saving and more economical than traditional techniques. Tomatoes (Solanum lycopersicum) are extensively cultivated throughout the world, are essential in the agricultural and culinary fields and are recognized for their beneficial contributions to health. Lack of knowledge about fruit maturity, proper harvesting and postharvest handling are factors responsible for large postharvest losses. Therefore, the objective of this research was the construction of a VAS that allows establishing relationships between color and maturity stage of the Chonto Roble F1 tomato. The VAS built is composed of hardware and software duly synchronized through the application of computer vision algorithms in Python 3.9 software that allow it to perform the acquisition and segmentation of the image and present the user with the color coordinates in the CIEL*a*b* system. Finally, color measurements were performed on tomato samples at different stages of ripening in the VAS and a HunterLab ColorQuest XE (EHL) spectrophotometer. The results obtained indicated that there are no significant differences in both measurement systems for L* values, the changes produced in b* and a* were statistically significant for tomato samples. The results obtained indicated the potential use of the constructed VAS for the determination of the degree of maturity of tomatoes in real time, in a non-invasive and low-cost way.

References

Artés-Calero, F., Artés-Hernández, F. 2004. Tratamientos postrecolección del tomate fresco. Tendencias e innovaciones, Capítulo 10, pp. 109-120. In: Tomates. Producción y comercio. Ediciones de Horticultura S.L. Reus, España. ISBN 84- 87729-48-7.

Castellanos Tolosa, N y Sánchez Jiménez, M. (2022). Desarrollo de carne de hamburguesa a base de harina de grillo. Universidad de los Andes. Disponible en: http://hdl.handle.net/1992/55654.

Changxia Li, Xuemei Hou, Nana Qi, Huwei Liu, Yihua Li, Dengjing Huang, Chunlei Wang, Weibiao Liao. (2021). Insight into ripening-associated transcription factors in tomato: A review, Scientia Horticulturae,Volume, 288,110363. https://doi.org/10.1016/j.scienta.2021.110363 DOI: https://doi.org/10.1016/j.scienta.2021.110363

Ciptaningtyas, D., N. Benyakart, H. Umehara, M. Johkan, N. Nakamura , M. Nagata , T. Orikasa , M. Thammawong , T. Shiina. (2022) Modelado del patrón de maduración metacrónica del tomate verde maduro afectado por el cultivo y la temperatura de almacenamiento Ciencia. Rep., 12, pág. 8241 , https://doi.org/10.1038/s41598- 022-12219-z. DOI: https://doi.org/10.1038/s41598-022-12219-z

CIE (1986) Colorimetry. 2nd Ed. CIE 15.2: Viena

Larraín, R., Schaefer, D., Reed, J. (2008). Use of digital images to estimate CIE color coordinates of beef. Food Research International, 41(4), 380-385. DOI: https://doi.org/10.1016/j.foodres.2008.01.002

Hongli Li, Gangshuai Liu, Daqi Fu. (2023).Transcriptional regulation of tomato fruit quality, Postharvest Biology and Technology,Volume 202,112393, https://doi.org/10.1016/j.postharvbio.2023.112393. DOI: https://doi.org/10.1016/j.postharvbio.2023.112393

López-Camelo, A.L., Gómez, P., Artés, F. (2003). Use of a* and b* colour parameters to assess the effect of some growth regulators on carotenoid biosynthesis during postharvest tomato ripening. Acta Horticulturae 599:305-308. DOI: https://doi.org/10.17660/ActaHortic.2003.599.36

Nassiri, S. M., Tahavoor, A., & Jafari, A. (2022). Fuzzy logic classification of mature tomatoes based on physical properties fusion. Information Processing in Agriculture, 9(4), 547-555. DOI: 2017.63807ijbse10.22059 DOI: https://doi.org/10.1016/j.inpa.2021.09.001

Ninja Begum, Manuj Kumar Hazarika. (2022).Maturity detection of tomatoes using transfer learning, Measurement: Food, Volume 7,100038. https://doi.org/10.1016/j.meafoo.2022.100038. DOI: https://doi.org/10.1016/j.meafoo.2022.100038

Instituto Colombiano de Norma Tecnica y Certificaión. Industria Alimentaria: Tomate de Mesa. Bogotá, D.C.: ICONTEC, 1995. Bogotá, D.C.: ICONTEC, 1976. (Norma

Técnica Colombiana; NTC- 1103-1).

Khan, A., Hassan, T., Shafay, M., Fahmy, I., Werghi, N., Mudigansalage, S., & Hussain,

I. (2023). Tomato maturity recognition with convolutional transformers: Scientific Reports. Sci. Rep., 13(1). https://doi.org/10.1038/s41598-023-50129-w DOI: https://doi.org/10.1038/s41598-023-50129-w

Konagaya, Keiji., Dimas Firmanda Al Riza, Sen Nie, Minori Yoneda, Takuya Hirata, Noriko Takahashi, Makoto Kuramoto, Yuichi Ogawa, Tetsuhito Suzuki, Naoshi Kondo. (2020), Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image, Postharvest Biology and Technology, Volume 160,111031. https://doi.org/10.1016/j.postharvbio.2019.111031. DOI: https://doi.org/10.1016/j.postharvbio.2019.111031

Prasad, K., Sanu Jacob, Mohammed Wasim Siddiqui, Chapter 2 - Fruit Maturity, Harvesting, and Quality Standards, Editor(s): Mohammed Wasim Siddiqui, Preharvest Modulation of Postharvest Fruit and Vegetable Quality, Academic Press, 2018, Pages 41-69, https://doi.org/10.1016/B978-0-12-809807-3.00002-0. DOI: https://doi.org/10.1016/B978-0-12-809807-3.00002-0

Przybylska, S., & Tokarczyk, G. (2022). Lycopene in the Prevention of Cardiovascular Diseases. International journal of molecular sciences, 23(4), 1957. https://doi.org/10.3390/ijms23041957 DOI: https://doi.org/10.3390/ijms23041957

Sharma, L. K. Ramesh , V. Paul , R. Pandey.( 2020 ). Índice de maduración: un mejor parámetro para la evaluación basada en el color del comportamiento de maduración de los frutos de tomate. Fisiol vegetal. Rep. , 25, págs . 171-177 , https://doi.org /10.1007/s40502-020-00499-4

Valencia, M. (2023).Desarrollo de un sistema de visión artificial para el monitoreo de los cambios de color en lomos de bovino. [Tesis,Universidad del Quindio]. bdigital.uniquindio.edu.co.

Wu, D., Sun, D. (2013). Colour measurements by computer vision for food quality control A review. Trends in Food Science and Technology, 29(1), 5-20. https://doi.org/10.1016/j.tifs.2012.08.004. DOI: https://doi.org/10.1016/j.tifs.2012.08.004

Published

2024-07-27

Issue

Section

Original

How to Cite

1.
Valencia Buitrago M, Torres Vargas OL. Classification of tomato ripeness in the agricultural industry using a computer vision system. LatIA [Internet]. 2024 Jul. 27 [cited 2025 Aug. 17];2:105. Available from: https://latia.ageditor.uy/index.php/latia/article/view/105