Detection of diabetic retinopathy using artificial intelligence: an exploratory systematic review
DOI:
https://doi.org/10.62486/latia2024112Keywords:
deep learning, CNN, ResNet 101, blindness, macular edemaAbstract
Diabetic retinopathy is a disease that can lead to vision loss and blindness in people with diabetes, so its early detection is important to prevent ocular complications. The aim of this study was to analyze the usefulness of artificial intelligence in the detection of diabetic retinopathy. For this purpose, an exploratory systematic review was performed, collecting 77 empirical articles from the Scopus, IEEE, ACM, SciELO and NIH databases. The results indicate that the most commonly used factors for the detection of diabetic retinopathy include changes in retinal vascularization, macular edema and microaneurysms. Among the most commonly applied algorithms for early detection are ResNet 101, CNN and IDx-DR. In addition, some artificial intelligence models are reported to have an accuracy ranging from 90% to 95%, although models with accuracies below 80% have also been identified. It is concluded that artificial intelligence, and in particular deep learning, has been shown to be effective in the early detection of diabetic retinopathy, facilitating timely treatment and improving clinical outcomes. However, ethical and legal concerns arise, such as privacy and security of patient data, liability in case of diagnostic errors, algorithmic bias, informed consent, and transparency in the use of artificial intelligence.
References
Cleland CR, Bascaran C, Makupa W, Shilio B, Sandi FA, Philippin H, et al. Artificial intelligence-supported diabetic retinopathy screening in Tanzania: rationale and design of a randomised controlled trial. BMJ Open [Internet]. 2024 Jan;14(1):e075055. Available from: https://bmjopen.bmj.com/content/bmjopen/14/1/e075055.full.pdf DOI: https://doi.org/10.1136/bmjopen-2023-075055
Padhy S, Takkar B, Chawla R, Kumar A. Artificial intelligence in diabetic retinopathy: A natural step to the future. Indian J Ophthalmol [Internet]. 2019;67(7):1004. Available from: https://journals.lww.com/10.4103/ijo.IJO_1989_18 DOI: https://doi.org/10.4103/ijo.IJO_1989_18
Huang XM, Yang BF, Zheng WL, Liu Q, Xiao F, Ouyang PW, et al. Cost-effectiveness of artificial intelligence screening for diabetic retinopathy in rural China. BMC Health Serv Res [Internet]. 2022 Feb 25;22(1):260. Available from: https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-022-07655-6 DOI: https://doi.org/10.1186/s12913-022-07655-6
Grzybowski A, Brona P. Analysis and Comparison of Two Artificial Intelligence Diabetic Retinopathy Screening Algorithms in a Pilot Study: IDx-DR and Retinalyze. J Clin Med [Internet]. 2021 May 27;10(11):2352. Available from: https://www.mdpi.com/2077-0383/10/11/2352 DOI: https://doi.org/10.3390/jcm10112352
Grauslund J. Diabetic retinopathy screening in the emerging era of artificial intelligence. Diabetologia [Internet]. 2022 Sep;65(9):1415–23. Available from: https://link.springer.com/10.1007/s00125-022-05727-0 DOI: https://doi.org/10.1007/s00125-022-05727-0
Sheng B, Chen X, Li T, Ma T, Yang Y, Bi L, et al. An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front Public Heal [Internet]. 2022 Oct 28;10. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2022.971943/full DOI: https://doi.org/10.3389/fpubh.2022.971943
Bidwai P, Gite S, Pahuja K, Kotecha K. A Systematic Literature Review on Diabetic Retinopathy Using an Artificial Intelligence Approach. Big Data Cogn Comput [Internet]. 2022 Dec 8;6(4):152. Available from: https://www.mdpi.com/2504-2289/6/4/152 DOI: https://doi.org/10.3390/bdcc6040152
Nakayama LF, Ribeiro LZ, Malerbi FK, Regatieri CVS. Ophthalmology and Artificial Intelligence: Present or Future? A Diabetic Retinopathy Screening Perspective of the Pursuit for Fairness. Front Ophthalmol [Internet]. 2022 May 10;2. Available from: https://www.frontiersin.org/articles/10.3389/fopht.2022.898181/full DOI: https://doi.org/10.3389/fopht.2022.898181
Huemer J, Wagner SK, Sim DA. The Evolution of Diabetic Retinopathy Screening Programmes: A Chronology of Retinal Photography from 35 mm Slides to Artificial Intelligence. Clin Ophthalmol [Internet]. 2020 Jul;Volume 14:2021–35. Available from: https://www.dovepress.com/the-evolution-of-diabetic-retinopathy-screening-programmes-a-chronolog-peer-reviewed-article-OPTH DOI: https://doi.org/10.2147/OPTH.S261629
Rajesh AE, Davidson OQ, Lee CS, Lee AY. Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness. Diabetes Care [Internet]. 2023 Oct 1;46(10):1728–39. Available from: https://diabetesjournals.org/care/article/46/10/1728/153626/Artificial-Intelligence-and-Diabetic-Retinopathy DOI: https://doi.org/10.2337/dci23-0032
Senapati A, Tripathy HK, Sharma V, Gandomi AH. Artificial intelligence for diabetic retinopathy detection: A systematic review. Informatics Med Unlocked [Internet]. 2024;45:101445. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352914824000017 DOI: https://doi.org/10.1016/j.imu.2024.101445
Li S, Zhao R, Zou H. Artificial intelligence for diabetic retinopathy. Chin Med J (Engl) [Internet]. 2022 Feb 5;135(3):253–60. Available from: https://journals.lww.com/10.1097/CM9.0000000000001816 DOI: https://doi.org/10.1097/CM9.0000000000001816
Kitchenham B, Charters S. Guidelines for performing Systematic Literature Reviews in Software Engineering. Keele Univ y Univ Durham [Internet]. 2007; Available from: https://legacyfileshare.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
Pei X, Yao X, Yang Y, Zhang H, Xia M, Huang R, et al. Efficacy of artificial intelligence-based screening for diabetic retinopathy in type 2 diabetes mellitus patients. Diabetes Res Clin Pract [Internet]. 2022 Feb;184(109190):109190. Available from: https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(22)00002-X/fulltext DOI: https://doi.org/10.1016/j.diabres.2022.109190
Lee AY, Yanagihara RT, Lee CS, Blazes M, Jung HC, Chee YE, et al. Multicenter, Head-to-Head, Real-World Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. Diabetes Care [Internet]. 2021 May 1;44(5):1168–75. Available from: https://diabetesjournals.org/care/article/44/5/1168/138752/Multicenter-Head-to-Head-Real-World-Validation DOI: https://doi.org/10.2337/dc20-1877
Gomez Rossi J, Rojas-Perilla N, Krois J, Schwendicke F. Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy. JAMA Netw Open [Internet]. 2022 Mar 15;5(3):e220269. Available from: https://watermark.silverchair.com/gomez_rossi_2022_oi_220023_1646767795.67452.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAzcwggMzBgkqhkiG9w0BBwagggMkMIIDIAIBADCCAxkGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrBWTZPTU5Xjdizw6AgEQgIIC6lDRh6xw7_M
Quellec G, Al Hajj H, Lamard M, Conze PH, Massin P, Cochener B. ExplAIn: Explanatory artificial intelligence for diabetic retinopathy diagnosis. Med Image Anal [Internet]. 2021 Aug;72:102118. Available from: https://linkinghub.elsevier.com/retrieve/pii/S136184152100164X DOI: https://doi.org/10.1016/j.media.2021.102118
Wolf RM, Channa R, Liu TYA, Zehra A, Bromberger L, Patel D, et al. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: the ACCESS randomized control trial. Nat Commun [Internet]. 2024 Jan 11;15(1):421. Available from: https://www.nature.com/articles/s41467-023-44676-z DOI: https://doi.org/10.1038/s41467-023-44676-z
Salma A, Bustamam A, Yudantha A, Victor A, Mangunwardoyo W. Artificial Intelligence Approach in Multiclass Diabetic Retinopathy Detection Using Convolutional Neural Network and Attention Mechanism. Int J Adv Soft Comput its Appl [Internet]. 2021 Dec 30;13(3):101–14. Available from: http://ijasca.zuj.edu.jo/PapersUploaded/2021.3.8.pdf DOI: https://doi.org/10.15849/IJASCA.211128.08
Takahashi H, Tampo H, Arai Y, Inoue Y, Kawashima H. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. Mori K, editor. PLoS One [Internet]. 2017 Jun 22;12(6):e0179790. Available from: https://dx.plos.org/10.1371/journal.pone.0179790 DOI: https://doi.org/10.1371/journal.pone.0179790
Rajamani S, Sasikala S. Artificial Intelligence Approach for Diabetic Retinopathy Severity Detection. Informatica [Internet]. 2023 Jan 5;46(8). Available from: https://www.informatica.si/index.php/informatica/article/view/4425 DOI: https://doi.org/10.31449/inf.v46i8.4425
Qian X, Jingying H, Xian S, Yuqing Z, Lili W, Baorui C, et al. The effectiveness of artificial intelligence-based automated grading and training system in education of manual detection of diabetic retinopathy. Front Public Heal [Internet]. 2022 Nov 7;10. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2022.1025271/full DOI: https://doi.org/10.3389/fpubh.2022.1025271
Hao Z, Cui S, Zhu Y, Shao H, Huang X, Jiang X, et al. Application of non-mydriatic fundus examination and artificial intelligence to promote the screening of diabetic retinopathy in the endocrine clinic: an observational study of T2DM patients in Tianjin, China. Ther Adv Chronic Dis [Internet]. 2020 Jan 10;11:204062232094241. Available from: http://journals.sagepub.com/doi/10.1177/2040622320942415 DOI: https://doi.org/10.1177/2040622320942415
Liu YF, Fei FQ, Chen NM, Zhu ZT, Fei XZ. Research progress in artificial intelligence assisted diabetic retinopathy diagnosis. Int J Ophthalmol [Internet]. 2023 Sep 18;16(9):1395–405. Available from: http://ies.ijo.cn/gjyken/ch/reader/view_abstract.aspx?file_no=20230905&flag=1 DOI: https://doi.org/10.18240/ijo.2023.09.05
Cuadros J. The Real-World Impact of Artificial Intelligence on Diabetic Retinopathy Screening in Primary Care. J Diabetes Sci Technol [Internet]. 2021 May 24;15(3):664–5. Available from: http://journals.sagepub.com/doi/10.1177/1932296820914287 DOI: https://doi.org/10.1177/1932296820914287
Han R, Yu W, Chen H, Chen Y. Using artificial intelligence reading label system in diabetic retinopathy grading training of junior ophthalmology residents and medical students. BMC Med Educ [Internet]. 2022 Dec 9;22(1):258. Available from: https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-022-03272-3 DOI: https://doi.org/10.1186/s12909-022-03272-3
Li H, Li G, Li N, Liu C, Yuan Z, Gao Q, et al. Cost-effectiveness analysis of artificial intelligence-based diabetic retinopathy screening in rural China based on the Markov model. Raafat KA, editor. PLoS One [Internet]. 2023 Nov 16;18(11):e0291390. Available from: https://dx.plos.org/10.1371/journal.pone.0291390 DOI: https://doi.org/10.1371/journal.pone.0291390
Xie Y, Gunasekeran D V., Balaskas K, Keane PA, Sim DA, Bachmann LM, et al. Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening. Transl Vis Sci Technol [Internet]. 2020 Apr 13;9(2):22. Available from: https://tvst.arvojournals.org/article.aspx?articleid=2764675 DOI: https://doi.org/10.1167/tvst.9.2.22
Barakat AA, Mobarak O, Javaid HA, Awad MR, Hamweyah K, Ouban A, et al. The application of artificial intelligence in diabetic retinopathy screening: a Saudi Arabian perspective. Front Med [Internet]. 2023 Nov 22;10. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2023.1303300/full DOI: https://doi.org/10.3389/fmed.2023.1303300
Hao Z, Xu R, Huang X, Ren X, Li H, Shao H. Application and observation of artificial intelligence in clinical practice of fundus screening for diabetic retinopathy with non-mydriatic fundus photography: a retrospective observational study of T2DM patients in Tianjin, China. Ther Adv Chronic Dis [Internet]. 2022 Jan 19;13:204062232210973. Available from: http://journals.sagepub.com/doi/10.1177/20406223221097335 DOI: https://doi.org/10.1177/20406223221097335
Ipp E, Liljenquist D, Bode B, Shah VN, Silverstein S, Regillo CD, et al. Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy. JAMA Netw Open [Internet]. 2021 Nov 15;4(11):e2134254. Available from: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2786132 DOI: https://doi.org/10.1001/jamanetworkopen.2021.34254
Yagin FH, Yasar S, Gormez Y, Yagin B, Pinar A, Alkhateeb A, et al. Explainable Artificial Intelligence Paves the Way in Precision Diagnostics and Biomarker Discovery for the Subclass of Diabetic Retinopathy in Type 2 Diabetics. Metabolites [Internet]. 2023 Dec 18;13(12):1204. Available from: https://www.mdpi.com/2218-1989/13/12/1204 DOI: https://doi.org/10.3390/metabo13121204
Komatsu K, Sano K, Fukai K, Nakagawa R, Nakagawa T, Tatemichi M, et al. Associated factors of diabetic retinopathy by artificial intelligence evaluation of fundus images in Japan. Sci Rep [Internet]. 2023 Nov 13;13(1):19742. Available from: https://www.nature.com/articles/s41598-023-47270-x DOI: https://doi.org/10.1038/s41598-023-47270-x
Hu W, Joseph S, Li R, Woods E, Sun J, Shen M, et al. Population impact and cost-effectiveness of artificial intelligence-based diabetic retinopathy screening in people living with diabetes in Australia: a cost effectiveness analysis. eClinicalMedicine [Internet]. 2024 Jan;67:102387. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589537023005643 DOI: https://doi.org/10.1016/j.eclinm.2023.102387
Scanzera AC, Beversluis C, Potharazu A V., Bai P, Leifer A, Cole E, et al. Planning an artificial intelligence diabetic retinopathy screening program: a human-centered design approach. Front Med [Internet]. 2023 Jul 7;10. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2023.1198228/full DOI: https://doi.org/10.3389/fmed.2023.1198228
Ursin F, Timmermann C, Orzechowski M, Steger F. Diagnosing Diabetic Retinopathy With Artificial Intelligence: What Information Should Be Included to Ensure Ethical Informed Consent? Front Med [Internet]. 2021 Jul 21;8. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2021.695217/full DOI: https://doi.org/10.3389/fmed.2021.695217
Wong TY, Sabanayagam C. Strategies to Tackle the Global Burden of Diabetic Retinopathy: From Epidemiology to Artificial Intelligence. Ophthalmologica [Internet]. 2020;243(1):9–20. Available from: https://karger.com/OPH/article/doi/10.1159/000502387 DOI: https://doi.org/10.1159/000502387
Shahsuvaryan ML. Is it time to consider teleophthalmology as a game-changer in the management of diabetic retinopathy? Rev Bras Oftalmol [Internet]. 2023 Sep 1;82. Available from: https://www.rbojournal.org/en/article/is-it-time-to-consider-teleophthalmology-as-a-game-changer-in-the-management-of-diabetic-retinopathy/ DOI: https://doi.org/10.37039/1982.8551.20230045
Zhelev Z, Peters J, Rogers M, Allen M, Kijauskaite G, Seedat F, et al. Test accuracy of artificial intelligence-based grading of fundus images in diabetic retinopathy screening: A systematic review. J Med Screen [Internet]. 2023 Sep 9;30(3):97–112. Available from: http://journals.sagepub.com/doi/10.1177/09691413221144382 DOI: https://doi.org/10.1177/09691413221144382
Liu R, Li Q, Xu F, Wang S, He J, Cao Y, et al. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Biomed Eng Online [Internet]. 2022 Dec 20;21(1):47. Available from: https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-022-01018-2#Sec1 DOI: https://doi.org/10.1186/s12938-022-01018-2
Lin S, Ma Y, Xu Y, Lu L, He J, Zhu J, et al. Artificial Intelligence in Community-Based Diabetic Retinopathy Telemedicine Screening in Urban China: Cost-effectiveness and Cost-Utility Analyses With Real-world Data. JMIR Public Heal Surveill [Internet]. 2023 Feb 23;9(9):e41624. Available from: https://pubmed.ncbi.nlm.nih.gov/36821353/ DOI: https://doi.org/10.2196/41624
Wolf RM, Liu TYA, Thomas C, Prichett L, Zimmer-Galler I, Smith K, et al. The SEE Study: Safety, Efficacy, and Equity of Implementing Autonomous Artificial Intelligence for Diagnosing Diabetic Retinopathy in Youth. Diabetes Care [Internet]. 2021 Mar 1;44(3):781–7. Available from: https://diabetesjournals.org/care/article/44/3/781/138584/The-SEE-Study-Safety-Efficacy-and-Equity-of DOI: https://doi.org/10.2337/dc20-1671
Scheetz J, Koca D, McGuinness M, Holloway E, Tan Z, Zhu Z, et al. Real-world artificial intelligence-based opportunistic screening for diabetic retinopathy in endocrinology and indigenous healthcare settings in Australia. Sci Rep [Internet]. 2021 Aug 4;11(1):15808. Available from: https://www.nature.com/articles/s41598-021-94178-5 DOI: https://doi.org/10.1038/s41598-021-94178-5
He J, Cao T, Xu F, Wang S, Tao H, Wu T, et al. Artificial intelligence-based screening for diabetic retinopathy at community hospital. Eye [Internet]. 2020 Mar 27;34(3):572–6. Available from: https://www.nature.com/articles/s41433-019-0562-4#citeas DOI: https://doi.org/10.1038/s41433-019-0562-4
Shah A, Clarida W, Amelon R, Hernaez-Ortega MC, Navea A, Morales-Olivas J, et al. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population. J Diabetes Sci Technol [Internet]. 2021 May 16;15(3):655–63. Available from: http://journals.sagepub.com/doi/10.1177/1932296820906212 DOI: https://doi.org/10.1177/1932296820906212
Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Heal [Internet]. 2019 May;1(1):e35–44. Available from: https://www.thelancet.com/journals/landig/article/PIIS2589-7500(19)30004-4/fulltext# DOI: https://doi.org/10.1016/S2589-7500(19)30004-4
Dong X, Du S, Zheng W, Cai C, Liu H, Zou J. Evaluation of an Artificial Intelligence System for the Detection of Diabetic Retinopathy in Chinese Community Healthcare Centers. Front Med [Internet]. 2022 Apr 11;9:883462. Available from: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.883462/full DOI: https://doi.org/10.3389/fmed.2022.883462
Wang H, Meng X, Tang Q, Hao Y, Luo Y, Li J. Development and Application of a Standardized Testset for an Artificial Intelligence Medical Device Intended for the Computer‐Aided Diagnosis of Diabetic Retinopathy. Xu Y, editor. J Healthc Eng [Internet]. 2023 Jan 8;2023(1). Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/7139560 DOI: https://doi.org/10.1155/2023/7139560
Xie Q, Liu Y, Huang H, Hong B, Wang J, Han H, et al. An innovative method for screening and evaluating the degree of diabetic retinopathy and drug treatment based on artificial intelligence algorithms. Pharmacol Res [Internet]. 2020 Sep;159:104986. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043661820312949 DOI: https://doi.org/10.1016/j.phrs.2020.104986
Obayya M, Nemri N, Nour MK, Al Duhayyim M, Mohsen H, Rizwanullah M, et al. Explainable Artificial Intelligence Enabled TeleOphthalmology for Diabetic Retinopathy Grading and Classification. Appl Sci [Internet]. 2022 Aug 31;12(17):8749. Available from: https://www.mdpi.com/2076-3417/12/17/8749 DOI: https://doi.org/10.3390/app12178749
Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye [Internet]. 2018 Jun 9;32(6):1138–44. Available from: https://www.nature.com/articles/s41433-018-0064-9 DOI: https://doi.org/10.1038/s41433-018-0064-9
Doğan ME, Bilgin AB, Sari R, Bulut M, Akar Y, Aydemir M. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Eye [Internet]. 2024 Jun 11;38(9):1694–701. Available from: https://www.nature.com/articles/s41433-024-03000-9 DOI: https://doi.org/10.1038/s41433-024-03000-9
Lupidi M, Danieli L, Fruttini D, Nicolai M, Lassandro N, Chhablani J, et al. Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting. Acta Diabetol [Internet]. 2023 May 8;60(8):1083–8. Available from: https://link.springer.com/10.1007/s00592-023-02104-0 DOI: https://doi.org/10.1007/s00592-023-02104-0
Korn Malerbi F, Barreto Melo G. Feasibility of screening for diabetic retinopathy using artificial intelligence, Brazil. Bull World Health Organ [Internet]. 2022 Oct 1;100(10):643–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511671/pdf/BLT.22.288580.pdf DOI: https://doi.org/10.2471/BLT.22.288580
Vaghefi E, Yang S, Xie L, Hill S, Schmiedel O, Murphy R, et al. THEIATM development, and testing of artificial intelligence‐based primary triage of diabetic retinopathy screening images in New Zealand. Diabet Med [Internet]. 2021 Apr 27;38(4). Available from: https://onlinelibrary.wiley.com/doi/10.1111/dme.14386 DOI: https://doi.org/10.1111/dme.14386
Penha FM, Priotto BM, Hennig F, Przysiezny B, Wiethorn BA, Orsi J, et al. Single retinal image for diabetic retinopathy screening: performance of a handheld device with embedded artificial intelligence. Int J Retin Vitr [Internet]. 2023 Jul 10;9(1):41. Available from: https://journalretinavitreous.biomedcentral.com/articles/10.1186/s40942-023-00477-6 DOI: https://doi.org/10.1186/s40942-023-00477-6
Natarajan S, Jain A, Krishnan R, Rogye A, Sivaprasad S. Diagnostic Accuracy of Community-Based Diabetic Retinopathy Screening With an Offline Artificial Intelligence System on a Smartphone. JAMA Ophthalmol [Internet]. 2019 Oct 1;137(10):1182. Available from: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2747315 DOI: https://doi.org/10.1001/jamaophthalmol.2019.2923
Kemp O, Bascaran C, Cartwright E, McQuillan L, Matthew N, Shillingford-Ricketts H, et al. Real-world evaluation of smartphone-based artificial intelligence to screen for diabetic retinopathy in Dominica: a clinical validation study. BMJ Open Ophthalmol [Internet]. 2023 Dec 21;8(1):e001491. Available from: https://bmjophth.bmj.com/lookup/doi/10.1136/bmjophth-2023-001491 DOI: https://doi.org/10.1136/bmjophth-2023-001491
Surya J, Garima, Pandy N, Hyungtaek Rim T, Lee G, Priya MS, et al. Efficacy of deep learning-based artificial intelligence models in screening and referring patients with diabetic retinopathy and glaucoma. Indian J Ophthalmol [Internet]. 2023 Aug;71(8):3039–45. Available from: https://journals.lww.com/10.4103/IJO.IJO_11_23 DOI: https://doi.org/10.4103/IJO.IJO_11_23
Grzybowski A, Rao DP, Brona P, Negiloni K, Krzywicki T, Savoy FM. Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence. Ophthalmic Res [Internet]. 2023;66(1):1286–92. Available from: https://karger.com/ORE/article/doi/10.1159/000534098 DOI: https://doi.org/10.1159/000534098
Ruan S, Hu WT, Jia HX, Wang SS, Song ML, Shen MX, et al. A new handheld fundus camera combined with visual artificial intelligence facilitates diabetic retinopathy screening. Int J Ophthalmol [Internet]. 2022 Apr 18;15(4):620–7. Available from: http://ies.ijo.cn/gjyken/ch/reader/view_abstract.aspx?file_no=20220416&flag=1 DOI: https://doi.org/10.18240/ijo.2022.04.16
Shah P, Mishra D, Shanmugam M, Doshi B, Jayaraj H, Ramanjulu R. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy – Artificial intelligence versus clinician for screening. Indian J Ophthalmol [Internet]. 2020;68(2):398. Available from: https://journals.lww.com/ijo/Fulltext/2020/68020/Validation_of_Deep_Convolutional_Neural.32.aspx DOI: https://doi.org/10.4103/ijo.IJO_966_19
Dow ER, Chen KM, Zhao C, Knapp A, Phadke A, Weng K, et al. Artificial Intelligence Improves Patient Follow-Up in a Diabetic Retinopathy Screening Program. Clin Ophthalmol [Internet]. 2023 Nov;Volume 17:3323–30. Available from: https://www.dovepress.com/artificial-intelligence-improves-patient-follow-up-in-a-diabetic-retin-peer-reviewed-fulltext-article-OPTH DOI: https://doi.org/10.2147/OPTH.S422513
Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney ML, Mehrotra A. Evaluation of Artificial Intelligence–Based Grading of Diabetic Retinopathy in Primary Care. JAMA Netw Open [Internet]. 2018 Sep 28;1(5):e182665. Available from: https://watermark.silverchair.com/kanagasingam_2018_oi_180132.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAyYwggMiBgkqhkiG9w0BBwagggMTMIIDDwIBADCCAwgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQM7MpNGgQIkaHOGG2AAgEQgIIC2TKjJIYmqSHntS0_wrkMKuK7bxw
Tsai MJ, Hsieh YT, Tsai CH, Chen M, Hsieh AT, Tsai CW, et al. Cross-Camera External Validation for Artificial Intelligence Software in Diagnosis of Diabetic Retinopathy. Li T, editor. J Diabetes Res [Internet]. 2022 Mar 9;2022(1):1–5. Available from: https://www.hindawi.com/journals/jdr/2022/5779276/ DOI: https://doi.org/10.1155/2022/5779276
Zhang Y, Shi J, Peng Y, Zhao Z, Zheng Q, Wang Z, et al. Artificial intelligence-enabled screening for diabetic retinopathy: a real-world, multicenter and prospective study. BMJ Open Diabetes Res Care [Internet]. 2020 Oct 21;8(1):e001596. Available from: https://drc.bmj.com/content/8/1/e001596 DOI: https://doi.org/10.1136/bmjdrc-2020-001596
Wewetzer L, Held LA, Goetz K, Steinhäuser J. Determinants of the implementation of artificial intelligence-based screening for diabetic retinopathy—a cross-sectional study with general practitioners in Germany. Digit Heal [Internet]. 2023 Jan 30;9:205520762311766. Available from: https://journals.sagepub.com/doi/10.1177/20552076231176644 DOI: https://doi.org/10.1177/20552076231176644
Al-hazaimeh OM, Abu-Ein A, Tahat N, Al-Smadi M, Al-Nawashi M. Combining Artificial Intelligence and Image Processing for Diagnosing Diabetic Retinopathy in Retinal Fundus Images. Int J Online Biomed Eng [Internet]. 2022 Oct 19;18(13):131–51. Available from: https://online-journals.org/index.php/i-joe/article/view/33985/12091 DOI: https://doi.org/10.3991/ijoe.v18i13.33985
Katada Y, Ozawa N, Masayoshi K, Ofuji Y, Tsubota K, Kurihara T. Automatic screening for diabetic retinopathy in interracial fundus images using artificial intelligence. Intell Med [Internet]. 2020 Dec;3–4(100024):100024. Available from: https://online-journals.org/index.php/i-joe/article/view/33985/12091 DOI: https://doi.org/10.1016/j.ibmed.2020.100024
Vidal-Alaball J, Royo Fibla D, Zapata MA, Marin-Gomez FX, Solans Fernandez O. Artificial Intelligence for the Detection of Diabetic Retinopathy in Primary Care: Protocol for Algorithm Development. JMIR Res Protoc [Internet]. 2019 Feb 1;8(2):e12539. Available from: http://www.researchprotocols.org/2019/2/e12539/ DOI: https://doi.org/10.2196/12539
Crane AB, Choudhry HS, Dastjerdi MH. Effect of simulated cataract on the accuracy of artificial intelligence in detecting diabetic retinopathy in color fundus photos. Indian J Ophthalmol [Internet]. 2024 Jan;72(Suppl 1):S42–5. Available from: https://journals.lww.com/10.4103/IJO.IJO_1163_23 DOI: https://doi.org/10.4103/IJO.IJO_1163_23
Gopalakrishnan N, Joshi A, Chhablani J, Yadav NK, Reddy NG, Rani PK, et al. Recommendations for initial diabetic retinopathy screening of diabetic patients using large language model-based artificial intelligence in real-life case scenarios. Int J Retin Vitr [Internet]. 2024 Jan 24;10(1):11. Available from: https://journalretinavitreous.biomedcentral.com/articles/10.1186/s40942-024-00533-9 DOI: https://doi.org/10.1186/s40942-024-00533-9
Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran D V, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Heal [Internet]. 2020 May;2(5):e240–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589750020300601 DOI: https://doi.org/10.1016/S2589-7500(20)30060-1
Tomić M, Vrabec R, Hendelja Đ, Kolarić V, Bulum T, Rahelić D. Diagnostic Accuracy of Hand-Held Fundus Camera and Artificial Intelligence in Diabetic Retinopathy Screening. Biomedicines [Internet]. 2023 Dec 22;12(1):34. Available from: https://www.mdpi.com/2227-9059/12/1/34 DOI: https://doi.org/10.3390/biomedicines12010034
Sosale B, Sosale A, Murthy H, Sengupta S, Naveenam M. Medios– An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Indian J Ophthalmol [Internet]. 2020;68(2):391. Available from: https://journals.lww.com/ijo/Fulltext/2020/68020/Medios__An_offline,_smartphone_based_artificial.30.aspx DOI: https://doi.org/10.4103/ijo.IJO_1203_19
Keel S, Lee PY, Scheetz J, Li Z, Kotowicz MA, MacIsaac RJ, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci Rep [Internet]. 2018 Mar 12;8(1):4330. Available from: https://www.nature.com/articles/s41598-018-22612-2 DOI: https://doi.org/10.1038/s41598-018-22612-2
Ibáñez-bruron M c., Cruzat A, Órdenes-Cavieres G, Coria M. Exactitud de tamizaje de retinopatía diabética: inteligencia artificial versus tecnólogos médicos entrenados. Rev Med Chil [Internet]. 2021 Apr;149(4):493–500. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872021000400493&lng=en&nrm=iso&tlng=en DOI: https://doi.org/10.4067/s0034-98872021000400493
Wang R, Zuo G, Li K, Li W, Xuan Z, Han Y, et al. Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in diabetic retinopathy. Front Endocrinol (Lausanne) [Internet]. 2022 Oct 31;13. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.1036426/full DOI: https://doi.org/10.3389/fendo.2022.1036426
Morya AK, Gowdar J, Kaushal A, Makwana N, Biswas S, Raj P, et al. Evaluating the Viability of a Smartphone-Based Annotation Tool for Faster and Accurate Image Labelling for Artificial Intelligence in Diabetic Retinopathy. Clin Ophthalmol [Internet]. 2021 Mar;Volume 15:1023–39. Available from: https://www.dovepress.com/evaluating-the-viability-of-a-smartphone-based-annotation-tool-for-fas-peer-reviewed-article-OPTH DOI: https://doi.org/10.2147/OPTH.S289425
Jain A, Krishnan R, Rogye A, Natarajan S. Use of offline artificial intelligence in a smartphone-based fundus camera for community screening of diabetic retinopathy. Indian J Ophthalmol [Internet]. 2021;69(11):3150. Available from: https://journals.lww.com/ijo/Fulltext/2021/11000/Use_of_offline_artificial_intelligence_in_a.40.aspx DOI: https://doi.org/10.4103/ijo.IJO_3808_20
Wang Y, Liu C, Hu W, Luo L, Shi D, Zhang J, et al. Economic evaluation for medical artificial intelligence: accuracy vs. cost-effectiveness in a diabetic retinopathy screening case. npj Digit Med [Internet]. 2024 Feb 21;7(1):43. Available from: https://www.nature.com/articles/s41746-024-01032-9#citeas DOI: https://doi.org/10.1038/s41746-024-01032-9
Arenas-Cavalli JT, Abarca I, Rojas-Contreras M, Bernuy F, Donoso R. Clinical validation of an artificial intelligence-based diabetic retinopathy screening tool for a national health system. Eye [Internet]. 2022 Jan 11;36(1):78–85. Available from: https://www.nature.com/articles/s41433-020-01366-0 DOI: https://doi.org/10.1038/s41433-020-01366-0
Held LA, Wewetzer L, Steinhäuser J. Determinants of the implementation of an artificial intelligence-supported device for the screening of diabetic retinopathy in primary care – a qualitative study. Health Informatics J [Internet]. 2022 Jul 3;28(3):146045822211128. Available from: http://journals.sagepub.com/doi/10.1177/14604582221112816 DOI: https://doi.org/10.1177/14604582221112816
Cao K. Artificial intelligence on diabetic retinopathy diagnosis: an automatic classification method based on grey level co-occurrence matrix and naive Bayesian model. Int J Ophthalmol [Internet]. 2019 Jul 18;12(7):1158–62. Available from: http://www.ijo.cn/gjyken/ch/reader/view_abstract.aspx?file_no=20190717&flag=1 DOI: https://doi.org/10.18240/ijo.2019.07.17
Sosale B, Aravind SR, Murthy H, Narayana S, Sharma U, Gowda SG V, et al. Simple, Mobile-based Artificial Intelligence Algo r ithm in the detection of Diabetic Retinopathy (SMART) study. BMJ Open Diabetes Res Care [Internet]. 2020 Jan 28;8(1):e000892. Available from: https://drc.bmj.com/lookup/doi/10.1136/bmjdrc-2019-000892 DOI: https://doi.org/10.1136/bmjdrc-2019-000892
Malerbi FK, Andrade RE, Morales PH, Stuchi JA, Lencione D, de Paulo JV, et al. Diabetic Retinopathy Screening Using Artificial Intelligence and Handheld Smartphone-Based Retinal Camera. J Diabetes Sci Technol [Internet]. 2022 May 12;16(3):716–23. Available from: http://journals.sagepub.com/doi/10.1177/1932296820985567 DOI: https://doi.org/10.1177/1932296820985567
Published
Issue
Section
License
Copyright (c) 2024 Richard Injante, Marck Julca (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.