Design of AI in leadership
DOI:
https://doi.org/10.62486/latia2025118Keywords:
Artificial Intelligence, Strategic Transformation, Leadership, Leaders, Culture, Competencies and Qualifications, Human InteractionAbstract
The present research aims to demonstrate the dominance of AI-based technologies over the Leadership sector in Industry 4.0 by combining the two main industries, such as "artificial intelligence" and "leadership." Artificial Intelligence (AI) has had a notable impact on the technical and social working environment due to the growing use of AI-supported technology. In particular, to recognise and address the needs and difficulties faced by leaders in the majority of organisations. The current essay emphasises how crucial leadership is to the adoption and use of AI in business. It has been thought that a thorough examination of the literature studies now in existence would demonstrate the need for AI-supported leadership techniques in businesses. The research divided leadership into four categories: the Process of Strategic Transformation, Competencies and Qualification, Culture, and the Interaction of Human-AI. This division was made based on the analysis of the literature review. The study's findings provide potential paths for further research and growth, as well as a thorough view.
References
Bhatia, S., Goel, A. K., Naib, B. B., Singh, K., Yadav, M., & Saini, A. (2023, July). Diabetes Prediction using Machine Learning. In 2023 World Conference on Communication & Computing (WCONF) (pp. 1-6). IEEE. doi: 10.1109/WCONF58270.2023.10235187 DOI: https://doi.org/10.1109/WCONF58270.2023.10235187
Singh, K., Singh, Y., Barak, D., Yadav, M., & Özen, E. (2023). Parametric evaluation techniques for reliability of Internet of Things (IoT). International Journal of Computational Methods and Experimental Measurements, 11(2), 123-134. http://doi.org/10.18280/ijcmem.110207 DOI: https://doi.org/10.18280/ijcmem.110207
Singh, K., Singh, Y., Barak, D., & Yadav, M. (2023). Evaluation of Designing Techniques for Reliability of Internet of Things (IoT). International Journal of Engineering Trends and Technology, 71(8), 102-118. https://doi.org/10.14445/22315381/IJETT-V71I8P209 DOI: https://doi.org/10.14445/22315381/IJETT-V71I8P209
Singh, K., Singh, Y., Barak, D. and Yadav, M., 2023. Comparative Performance Analysis and Evaluation of Novel Techniques in Reliability for Internet of Things with RSM. International Journal of Intelligent Systems and Applications in Engineering, 11(9s), pp.330-341. https://www.ijisae.org/index.php/IJISAE/article/view/3123
Singh, K., Yadav, M., Singh, Y., & Barak, D. (2023). Reliability Techniques in IoT Environments for the Healthcare Industry. In AI and IoT-Based Technologies for Precision Medicine (pp. 394-412). IGI Global. DOI: 10.4018/979-8-3693-0876-9.ch023 DOI: https://doi.org/10.4018/979-8-3693-0876-9.ch023
Singh, K., Singh, Y., Barak, D., & Yadav, M. (2023). Detection of Lung Cancers From CT Images Using a Deep CNN Architecture in Layers Through ML. In AI and IoT-Based Technologies for Precision Medicine (pp. 97-107). IGI Global. DOI: 10.4018/979-8-3693-0876-9.ch006 DOI: https://doi.org/10.4018/979-8-3693-0876-9.ch006
Kumar, S., Kumar, A. , Parashar, N., Moolchandani, J., Saini, A., Kumar, R., Yadav, M. , Singh, K., & Mena, Y. (2024). An Optimal Filter Selection on Grey Scale Image for De-Noising by using Fuzzy Technique. International Journal of Intelligent Systems and Applications in Engineering, 12(20s), 322–330. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5143
Yadav, M., & Kumar, H. (2024). Profit Analysis of Repairable Juice Plant. Reliability: Theory & Applications, 19(1 (77)), 688-695. https://doi.org/10.24412/1932-2321-2024-177-688-695 DOI: https://doi.org/10.1016/j.jpurol.2023.08.013
Singh, K., Singh, Y., Khang, A., Barak, D., & Yadav, M. (2024).Internet of Things (IoT)-Based Technologies for Reliability Evaluation with Artificial Intelligence (AI). AI and IoT Technology and Applications for Smart Healthcare Systems, 387. http://dx.doi.org/10.1201/9781032686745-23 DOI: https://doi.org/10.1201/9781032686745-23
Bhatia, S., Goel, N., Ahlawat, V., Naib, B. B., & Singh, K. (2023). A Comprehensive Review of IoT Reliability and Its Measures: Perspective Analysis. Handbook of Research on Machine Learning-Enabled IoT for Smart Applications Across Industries, 365-384. DOI: 10.4018/978-1-6684-8785-3.ch019 DOI: https://doi.org/10.4018/978-1-6684-8785-3.ch019
Singh, K., Mistrean, L., Singh, Y., Barak, D., & Parashar, A. (2023). Fraud detection in financial transactions using IOT and big data analytics. In Competitivitatea şi inovarea în economia cunoaşterii (pp. 490-494). https://doi.org/10.53486/cike2023.52 DOI: https://doi.org/10.53486/cike2023.52
Sood, K., Dev, M., Singh, K., Singh, Y., & Barak, D. (2022). Identification of Asymmetric DDoS Attacks at Layer 7 with Idle Hyperlink. ECS Transactions, 107(1), 2171. http://dx.doi.org/10.1149/10701.2171ecst DOI: https://doi.org/10.1149/10701.2171ecst
Singh, K., Yadav, M., Singh, Y., Barak, D., Saini, A., & Moreira, F. Reliability on the Internet of Things with Designing Approach for Exploratory Analysis. Frontiers in Computer Science, 6, 1382347. doi: 10.3389/fcomp.2024.1382347 DOI: https://doi.org/10.3389/fcomp.2024.1382347
Singh, K., Yadav, M., Singh, Y., & Barak, D. (2024). Finding Security Gaps and Vulnerabilities in IoT Devices. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 379-395). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch023 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch023
Hajimahmud, V. A., Singh, Y., & Yadav, M. (2024). Using a Smart Trash Can Sensor for Trash Disposal. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 311-319). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch020 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch020
Yadav, M., Hajimahmud, V. A., Singh, K., & Singh, Y. (2024). Convert Waste Into Energy Using a Low Capacity Igniter. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 301-310). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch019 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch019
Singh, K., Yadav, M., & Yadav, R. K. (2024). IoT-Based Automated Dust Bins and Improved Waste Optimization Techniques for Smart City. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 167-194). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch012 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch012
Khang, A., Singh, K., Yadav, M., & Yadav, R. K. (2024). Minimizing the Waste Management Effort by Using Machine Learning Applications. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 42-59). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch004 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch004
Sharma, H., Singh, K., Ahmed, E., Patni, J., Singh, Y., & Ahlawat, P. (2020). IoT based automatic electric appliances controlling device based on visitor counter, 24(10) 4186-4196, https://doi.org/10.37200/V24I10/32891.
Singh, K., & Barak, D. (2024). Healthcare Performance in Predicting Type 2 Diabetes Using Machine Learning Algorithms. In Driving Smart Medical Diagnosis Through AI-Powered Technologies and Applications (pp. 130-141). IGI Global. DOI: 10.4018/979-8-3693-3679-3.ch008 DOI: https://doi.org/10.4018/979-8-3693-3679-3.ch008
Khwaldeh, S., Mohit, Y., & Khushwant, S. (2024, May). Defensive Auto-Updatable and Adaptable Bot Recommender System (DAABRS): A New Architecture Approach in Cloud Computing Systems. In 2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-6). IEEE. https://doi.org/10.1109/HORA61326.2024.10550519 DOI: https://doi.org/10.1109/HORA61326.2024.10550519
Singh, K., Yadav, M., & Abdullayev, V. H. (2024). Prediction of Flight Areas using Machine Learning Algorithm. LatIA, 2, 93-93. https://doi.org/10.62486/latia202493 DOI: https://doi.org/10.62486/latia202493
Asgarova, B., Jafarov, E., Babayev, N., Abdullayev, V., & Singh, K. (2024). Improving Cleaning of Solar Systems through Machine Learning Algorithms. LatIA, 2, 100-100. https://doi.org/10.62486/latia2024100 DOI: https://doi.org/10.62486/latia2024100
Asgarova, B., Jafarov, E., Babayev, N., Abdullayev, V., & Singh, K. (2024). Artificial neural networks with better analysis reliability in data mining. LatIA, 2, 111-111. https://doi.org/10.62486/latia2024111 DOI: https://doi.org/10.62486/latia2024111
Askerov, T., Abdullayev, V., Abuzarova, V., Niu, Y., & Singh, K. (2024). Data processing in internet of things networks. LatIA, 2, 91-91. https://doi.org/10.62486/latia2024111 DOI: https://doi.org/10.62486/latia202491
Khang, A., Hajimahmud, V. A., & Singh, K. (2024). Water Quality Classification Using Machine Learning Algorithms. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 60-76). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch005 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch005
Kumar, B., Devi, J., Saini, P., Khurana, D., Singh, K., & Singh, Y. (2024). Exploring the therapeutic potentials of bidentate ligands derived from benzohydrazide and their mononuclear transition metal complexes: insights from computational studies. Research on Chemical Intermediates, 1-22. https://doi.org/10.1007/s11164-024-05328-z DOI: https://doi.org/10.1007/s11164-024-05328-z
Khurana, D., Kumar, B., Devi, J., Antil, N., Patil, R. B., Singh, K., & Singh, Y. (2024). Unlocking the Biological Potential of Transition Metal Complexes with Thiosemicarbazone Ligands: Insights from Computational Studies. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e33150 DOI: https://doi.org/10.1016/j.heliyon.2024.e33150
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Khushwant Singh, Mohit Yadav (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.