Robust Face Tracking Under Challenging Conditions Using Linear Regression and YOLO algorithm
DOI:
https://doi.org/10.62486/latia2025120Keywords:
Face detection, Face tracking, YOLO algorithm, Linear Regression, Kalman FilterAbstract
Face detection and tracking play a crucial role in various computer vision applications, including surveillance, fault face detection systems, artificial intelligence, etc. The objective of this paper is to enhance the precision of face detection and tracking through the introduction of an innovative approach centered on the linear regression algorithm. The effectiveness of the proposed method was compared to the traditional Kalman filter approach. Additionally, the study explored the integration of the YOLO algorithm for face detection with the linear regression tracking algorithm to further enhance accuracy. The proposed algorithm's performance is assessed through comprehensive experiments on annotated images and video sequences affected by occlusions or other issues such as poor lighting conditions and motion blur. These experiments utilize the COCO dataset, operating at a speed of 60 FPS. The experimental results show that the proposed method can accurately track the human face in different facial positions
References
Nguyen, V. T., Chu, D. T., Phan, D. H., & Tran, N. T. (2023). An Improvement of the Camshift Human Tracking Algorithm Based on Deep Learning and the Kalman Filter. Journal of Robotics, 2023. DOI: https://doi.org/10.1155/2023/5525744
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). DOI: https://doi.org/10.1109/CVPR.2016.91
Bharati, P., & Pramanik, A. (2020). Deep learning techniques—R-CNN to mask R-CNN: a survey. Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2019, 657-668. DOI: https://doi.org/10.1007/978-981-13-9042-5_56
Wan, S., & Goudos, S. (2020). Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 168, 107036. DOI: https://doi.org/10.1016/j.comnet.2019.107036
Cao, C., Wang, B., Zhang, W., Zeng, X., Yan, X., Feng, Z., ... & Wu, Z. (2019). An improved faster R-CNN for small object detection. Ieee Access, 7, 106838-106846. DOI: https://doi.org/10.1109/ACCESS.2019.2932731
Kumari, K., & Yadav, S. (2018). Linear regression analysis study. Journal of the practice of Cardiovascular Sciences, 4(1), 33. DOI: https://doi.org/10.4103/jpcs.jpcs_8_18
Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140-147. DOI: https://doi.org/10.38094/jastt1457
Sen J, Mehtab S. (2021) A comparative study of optimum risk portfolio and eigen portfolio on the Indian stock market. International Journal of Business Forecasting and Marketing Intelligence. Inderscience, Paper ID: IJBFMI-90288. DOI: https://doi.org/10.1504/IJBFMI.2021.10043037
N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” Proc. - Int. Conf. Image Process. ICIP, vol. 2017-Septe, pp. 3645–3649, 2018, doi: 10.1109/ICIP.2017.8296962. DOI: https://doi.org/10.1109/ICIP.2017.8296962
R. Muñoz-Salinas, R. Medina-Carnicer, F. J. Madrid-Cuevas, and A. Carmona-Poyato, “Multi-camera people tracking using evidential filters,” Int. J. Approx. Reason., vol. 50, no. 5, pp. 732–749, 2009, doi: 10.1016/j.ijar.2009.02.001. DOI: https://doi.org/10.1016/j.ijar.2009.02.001
Azhar, M. I. H., Zaman, F. H. K., Tahir, N. M., & Hashim, H. (2020, August). People tracking system using DeepSORT. In 2020 10th IEEE international conference on control system, computing and engineering (ICCSCE) (pp. 137-141). DOI: https://doi.org/10.1109/ICCSCE50387.2020.9204956
Ellis, L., Dowson, N., Matas, J., & Bowden, R. (2011). Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking. International Journal of Computer Vision, 95(23), 154- 179. DOI: https://doi.org/10.1007/s11263-010-0364-4
Gupta, I., Mittal, H., Rikhari, D., & Singh, A. K. (2022). Mlrm: A multiple linear regression-based model for average temperature prediction of a day. arXiv preprint arXiv:2203.05835.
Aung, H., Valentinovich, B. A., & Aye, B. (2022, May). Real-Time Face Tracking Based on the Kalman Filter. IEEE In 2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (pp. 842-846). DOI: https://doi.org/10.1109/ICIEAM54945.2022.9787232
Sadura, P. (2021, September). Motion-based multiple object detection and tracking in video. IEEE In 2021 Signal Processing Symposium (SPSympo) (pp. 248-251). DOI: https://doi.org/10.1109/SPSympo51155.2020.9593340
M. S. Al-Batah, M. Alzyoud, R. Alazaidah, M. Toubat, H. Alzoubi, & A. Olaiyat, “Early Prediction of Cervical Cancer Using Machine Learning Techniques,” Jordanian Journal of Computers and Information Technology, 8(4), 2022. DOI: https://doi.org/10.5455/jjcit.71-1661691447
M. S. Al-Batah, “Ranked features selection with MSBRG algorithm and rules classifiers for cervical cancer,” Int. J. online Biomed. Eng., vol. 15, no. 12, pp. 4–17, 2019, doi: 10.3991/ijoe.v15i12.10803. DOI: https://doi.org/10.3991/ijoe.v15i12.10803
M. Al-Batah, B. Zaqaibeh, S. A. Alomari, and M. S. Alzboon, “Gene Microarray Cancer classification using correlation based feature selection algorithm and rules classifiers,” Int. J. online Biomed. Eng., vol. 15, no. 8, pp. 62–73, 2019, doi: 10.3991/ijoe.v15i08.10617. DOI: https://doi.org/10.3991/ijoe.v15i08.10617
A. Quteishat, M. Al-Batah, A. Al-Mofleh, and S. H. Alnabelsi, “Cervical cancer diagnostic system using adaptive fuzzy moving k-means algorithm and fuzzy min-max neural network,” J. Theor. Appl. Inf. Technol., vol. 57, no. 1, pp. 48–53, 2013.
M. S. Al-Batah, A. Zabian, and M. Abdel-Wahed, “Suitable features selection for the HMLP network using circle segments method,” Eur. J. Sci. Res., vol. 67, no. 1, pp. 52–65, 2011.
M. S. Al-Batah, "Automatic diagnosis system for heart disorder using ESG peak recognition with ranked features selection,” International Journal of Circuits, Systems and Signal Processing, 13(June), 391–398, 2019.
M. S. Al-Batah, M. S. Alkhasawneh, L. T. Tay, U. K. Ngah, Hj Lateh, H., and N. A. Mat Isa, "Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron. Mathematical Problems in Engineering,” 2015, https://doi.org/10.1155/2015/512158 DOI: https://doi.org/10.1155/2015/512158
M. S. Alkhasawneh, U. K. Ngah, L. T. Tay, N. A. Mat Isa, and M. S. Al-Batah, "Determination of important topographic factors for landslide mapping analysis using MLP network,” The Scientific World Journal, 2013, https://doi.org/10.1155/2013/415023 DOI: https://doi.org/10.1155/2013/415023
A. F. karimBaareh, A. Sheta, and M.S. Al-Batah, "Feature based 3D Object Recognition using Artificial Neural Networks,” International Journal of Computer Applications, 44(5), 1–7, 2012, https://doi.org/10.5120/6256-8402 DOI: https://doi.org/10.5120/6256-8402
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Haya Alhadramy, Mazen Alzyoud, Mohammad Subhi Al-Batah2, Najah Al-shanableh (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.