A Machine Learning Model for Diagnosis and Differentiation of Schizophrenia, Bipolar Disorder and Borderline Personality Disorder

Authors

DOI:

https://doi.org/10.62486/latia2025133

Keywords:

Schizophrenia, bipolar disorder, borderline personality disorder, machine learning, neuroimaging, diagnostic model

Abstract

Schizophrenia, bipolar disorder, and borderline personality disorder present overlapping symptoms, complicating accurate diagnosis. Misdiagnosis leads to inappropriate treatment, increased patient distress, and higher healthcare burdens. This study develops a machine learning model integrating clinical, neuroimaging, and behavioral data to improve diagnostic accuracy. The model utilizes Convolutional Neural Networks (CNNs) for neuroimaging, Gradient Boosting Machines (GBMs) for structured clinical and behavioral data, and Recurrent Neural Networks (RNNs) for speech analysis. The combined model demonstrated superior accuracy (94.1%) compared to individual models. SHAP analysis identified key diagnostic features, including specific brain regions, cognitive measures, and speech patterns. External validation confirmed robustness, highlighting the model’s potential as a clinical decision-support tool. Future research should focus on enhancing model interpretability and real-time diagnostic support.

References

Da Fonseca D, Fourneret P. Very early onset schizophrenia. Encephale. 2018;44(6). DOI: https://doi.org/10.1016/S0013-7006(19)30072-7

Shim M, Hwang HJ, Kim DW, Lee SH, Im CH. Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features. Schizophr Res. 2016;176(2–3). DOI: https://doi.org/10.1016/j.schres.2016.05.007

Goes FS. Diagnosis and management of bipolar disorders. BMJ. 2023. DOI: https://doi.org/10.1136/bmj-2022-073591

Malhi GS, Jadidi M, Bell E. The diagnosis of bipolar disorder in children and adolescents: Past, present and future. Vol. 25, Bipolar Disorders. 2023. DOI: https://doi.org/10.1111/bdi.13367

Zimmerman M, Morgan TA. The relationship between borderline personality disorder and bipolar disorder. Dialogues Clin Neurosci. 2013;15(2). DOI: https://doi.org/10.31887/DCNS.2013.15.2/mzimmerman

Butler M, Urosevic S, Desai P, Sponheim S, Popp J, Nelson V, et al. Treatment for Bipolar Disorder in Adults: A Systematic Review. Comp Eff Rev. 2018;(208). DOI: https://doi.org/10.23970/AHRQEPCCER208

Paris J. Differential Diagnosis of Borderline Personality Disorder. Vol. 41, Psychiatric Clinics of North America. 2018. DOI: https://doi.org/10.1016/S0193-953X(18)31159-6

Del Casale A, Bonanni L, Bargagna P, Novelli F, Fiaschè F, Paolini M, et al. Current Clinical Psychopharmacology in Borderline Personality Disorder. Curr Neuropharmacol. 2021;19(10). DOI: https://doi.org/10.2174/1570159X19666210610092958

Santangelo P, Bohus M, Ebner-Priemer UW. Ecological momentary assessment in borderline personality disorder: A review of recent findings and methodological challenges. J Pers Disord. 2014;28(4). DOI: https://doi.org/10.1521/pedi_2012_26_067

M.L. P, D.J. K. Bipolar Disorder 2 - Bipolar disorder diagnosis: Challenges and future directions. Lancet. 2013;381(9878). DOI: https://doi.org/10.1016/S0140-6736(13)60989-7

Wahed MA, Alzboon MS, Alqaraleh M, Al-Batah M, Bader AF, Wahed SA. Enhancing Diagnostic Precision in Pediatric Urology: Machine Learning Models for Automated Grading of Vesicoureteral Reflux. 2024 7th Int Conf Internet Appl Protoc Serv [Internet]. 2024 Nov 6 [cited 2025 Feb 8];1–7. Available from: https://ieeexplore.ieee.org/document/10823509/ DOI: https://doi.org/10.1109/NETAPPS63333.2024.10823509

Alqaraleh M, Alzboon MS, Al-Batah MS, Wahed MA, Abuashour A, Alsmadi FH. Harnessing Machine Learning for Quantifying Vesicoureteral Reflux: A Promising Approach for Objective Assessment. Int J online Biomed Eng [Internet]. 2024 Aug 21 [cited 2025 Feb 8];20(11):123. Available from: https://openurl.ebsco.com/contentitem/doi:10.3991%2Fijoe.v20i11.49673?sid=ebsco:plink:crawler&id=ebsco:doi:10.3991%2Fijoe.v20i11.49673

Song P, Wang Y, Geng X, Zhang H, Song X. Survey of deep learning in MRI-based diagnosis of schizophrenia. Vol. 25, Journal of Image and Graphics. 2020. DOI: https://doi.org/10.11834/jig.200284

Abdel Wahed M, Alqaraleh M, Salem Alzboon M, Subhi Al-Batah M, Wahed AM, Alzboon SM, et al. Application of Artificial Intelligence for Diagnosing Tumors in the Female Reproductive System: A Systematic Review. Multidiscip (Montevideo), ISSN-e 3046-4064, No 3, 2025 (Ejemplar Dedic a Multidiscip [Internet]. 2025 [cited 2025 Feb 8];3(3):15. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=9870144&info=resumen&idioma=ENG DOI: https://doi.org/10.62486/agmu202554

Maric NP, Jovicic MJ, Mihaljevic M, Miljevic C. Improving Current Treatments for Schizophrenia. Drug Dev Res. 2016;77(7). DOI: https://doi.org/10.1002/ddr.21337

Howland RH. Challenges in the diagnosis & treatment of bipolar depression - Part 1: Assessment. Vol. 44, Journal of Psychosocial Nursing and Mental Health Services. 2006. DOI: https://doi.org/10.3928/02793695-20060401-02

Chang KD. Challenges in the diagnosis and treatment of pediatric bipolar depression. Vol. 11, Dialogues in Clinical Neuroscience. 2009. DOI: https://doi.org/10.31887/DCNS.2009.11.1/kchang

Alzboon MS, Alqaraleh M, Wahed MA, Alourani A, Bader AF, Al-Batah M. AI-Driven UAV Distinction: Leveraging Advanced Machine Learning. 2024 7th Int Conf Internet Appl Protoc Serv [Internet]. 2024 Nov 6 [cited 2025 Feb 8];1–7. Available from: https://ieeexplore.ieee.org/document/10823488/ DOI: https://doi.org/10.1109/NETAPPS63333.2024.10823488

Zakariah M, Alotaibi YA. Unipolar and Bipolar Depression Detection and Classification Based on Actigraphic Registration of Motor Activity Using Machine Learning and Uniform Manifold Approximation and Projection Methods. Diagnostics. 2023;13(14). DOI: https://doi.org/10.3390/diagnostics13142323

Sharma M, Patel RK, Garg A, SanTan R, Acharya UR. Automated detection of schizophrenia using deep learning: a review for the last decade. Vol. 44, Physiological Measurement. 2023. DOI: https://doi.org/10.1088/1361-6579/acb24d

Downloads

Published

2025-12-31

Issue

Section

Original

How to Cite

1.
Abdel Wahed SAW, Shdefat RS, Wahed MA. A Machine Learning Model for Diagnosis and Differentiation of Schizophrenia, Bipolar Disorder and Borderline Personality Disorder. LatIA [Internet]. 2025 Dec. 31 [cited 2025 Apr. 3];3:133. Available from: https://latia.ageditor.uy/index.php/latia/article/view/133