Hospital processes optimization based on artificial intelligence

Authors

DOI:

https://doi.org/10.62486/latia202319

Keywords:

automation, hospital efficiency, artificial intelligence, predictive monitoring, personalization of care

Abstract

Artificial intelligence is revolutionizing hospital management by optimizing critical processes to improve operational efficiency. The automation of administrative tasks allows reducing errors and streamlining the flow of patients and work, which translates into lower costs and better use of hospital resources. The objective is to analyze research related to the optimization of hospital processes based on artificial intelligence. The research paradigm was qualitative-quantitative, the focus of this research was based on a bibliometric analysis, which was complemented with a documentary review in databases of high international and Latin American impact in the period from 2010 to 2024. The trend of the research was towards an increase, where research in the area of medicine and computer sciences predominated. A keyword co-occurrence and citation analysis were carried out to identify possible lines of research. It was identified that monitoring and predictive analytics technologies based on artificial intelligence enable proactive management of patients' health, preventing complications and optimizing resource allocation. These tools also facilitate the personalization of care, adjusting treatments according to the specific needs of each patient. The implementation of artificial intelligence in hospital processes is a crucial tool for improving operational efficiency and reducing costs through the automation of administrative tasks, resulting in a smoother and more effective operation

References

Calmes SH. The Autumn Ghost. How the Battle Against a Polio Epidemic Revolutionized Modern Medical Care. Anesthesiology. 2023;139(2):237-8. Disponible en: http://doi.org/10.1097/ALN.0000000000004606. DOI: https://doi.org/10.1097/ALN.0000000000004606

Sánchez Suárez Y, Estupiñan López SdlC, Marqués León M, Hernández Nariño A, Medina León A. Descripción de prácticas de administración de operaciones aplicadas a la gestión de servicios hospitalarios: un análisis de la literatura. Ingeniería Industrial 2022(43):81-100. Disponible en: http://doi.org/10.26439/ing.ind2022.n43.6110. DOI: https://doi.org/10.26439/ing.ind2022.n43.6110

Sánchez Suárez Y, Trujillo García L, Marqués León M, Santos Pérez O. Los indicadores de gestión hospitalarias en tiempos de Covid 19. Visionario Digital. 2021;5(4):58-77. Disponible en: http://doi.org/10.33262/visionariodigital.v5i4.1901.

Atzil-Slonim D, Penedo JMG, Lutz W. Leveraging Novel Technologies and Artificial Intelligence to Advance Practice-Oriented Research. Administration and Policy in Mental Health and Mental Health Services Research. 2024;51(3):306-17. Disponible en: http://doi.org/10.1007/s10488-023-01309-3. DOI: https://doi.org/10.1007/s10488-023-01309-3

Tomalá De La Cruz MA, Mascaró Benites EM, Carrasco Cachinelli CG, Aroni Caicedo EV. Incidencias de la inteligencia artificial en la educación. RECIMUNDO. 2023;7(2):238-51. Disponible en: http://doi.org/10.26820/recimundo/7.(2).jun.2023.238-251. DOI: https://doi.org/10.26820/recimundo/7.(2).jun.2023.238-251

Zapata Muriel FA, Montoya Zapata S, Montoya-Zapata D. Dilemas éticos planteados por el auge de la inteligencia artificial: una mirada desde el transhumanismo. Región Científica. 2024;3(1):2024225. Disponible en: http://doi.org/10.58763/rc2024225. DOI: https://doi.org/10.58763/rc2024225

Ocaña-Fernández Y, Valenzuela-Fernández LA, Vera-Flores MÁ, Rengifo-Lozano RA. Inteligencia artificial (IA) aplicada a la gestión pública. Revista Venezolana de Gerencia. 2021;26(94):696-707. Disponible en: https://www.redalyc.org/journal/290/29069612013/29069612013.pdf. DOI: https://doi.org/10.52080/rvgv26n94.14

Baldassarre A, Padovan M. Regulatory and Ethical Considerations on Artificial Intelligence for Occupational Medicin. Medicina del Lavoro. 2024;115(2). Disponible en: http://doi.org/10.23749/mdl.v115i2.15881.

Norrman A, Hasselström J, Ljunggren G, Wachtler C, Eriksson J, Kahan T, et al. Predicting new cases of hypertension in Swedish primary care with a machine learning tool. Preventive Medicine Reports. 2024;44. Disponible en: http://doi.org/10.1016/j.pmedr.2024.102806. DOI: https://doi.org/10.1016/j.pmedr.2024.102806

Kachman MM, Brennan I, Oskvarek JJ, Waseem T, Pines JM. How artificial intelligence could transform emergency care. American Journal of Emergency Medicine. 2024;81:40-6. Disponible en: http://doi.org/10.1016/j.ajem.2024.04.024. DOI: https://doi.org/10.1016/j.ajem.2024.04.024

Sánchez Suárez Y. Instrumento metodológico para la gestión de flujos de pacientes de instituciones hospitalaria: Universidad de Matanzas. Facultad de Ciencias Técnicas; 2023.

Hurtado-Guevara RF. Impacto de la Automatización Contable en la Eficiencia Operativa de las PYMEs. Revista Científica Zambos. 2024;3(1):19-35. Disponible en: http://doi.org/10.69484/rcz/v3/n1/10. DOI: https://doi.org/10.69484/rcz/v3/n1/10

Wahyuni S, Pranata S, Setiaprabhawa FB, Maftuchah L. Exploring the Trend of Technology Use and Innovation in Health Care Service in Hospitals through a Bibliometric Analysis. Babcock University Medical Journal. 2024;7(1):51-63. Disponible en: http://doi.org/10.38029/babcockuniv.med.j..v7i1.379. DOI: https://doi.org/10.38029/babcockuniv.med.j..v7i1.379

Yu S, Kulkarni VG, Deshpande V. Appointment scheduling for a health care facility with series patients. Production and Operations Management. 2020;29(2):388-409. Disponible en: http://doi.org/10.1111/poms.13117. DOI: https://doi.org/10.1111/poms.13117

Sánchez Suárez Y, Gómez Cano CA, Sánchez Castillo V. Planificación de la capacidad hospitalaria en condiciones de incertidumbre. Económicas CUC. 2024;45(1):e35364-e. Disponible en: http://doi.org/10.17981/econcuc.Org.5364.

Sánchez Suárez Y, Marqués León M, Hernández Nariño A, Suárez Pérez M. Metodología para el diagnóstico de la gestión de trayectorias de pacientes en hospitales. Región Científica. 2023;2(2):2023115. Disponible en: http://doi.org/10.58763/rc2023115. DOI: https://doi.org/10.58763/rc2023115

Yap JC, Qian Y. Understanding Hospital Waiting Times. Saw Swee Hock School of Public Health, National University of Singapore. 2019:1-35. Disponible en: https://sph.nus.edu.sg/wp-content/uploads/2019/06/SSHSPH_Understanding-Hospital-Waiting-Times.pdf.

Osborne TF, Veigulis ZP, Arreola DM, Röösli E, Curtin CM. Automated EHR score to predict COVID-19 outcomes at US Department of Veterans Affairs. PLoS ONE. 2020;15(7 July). Disponible en: http://doi.org/10.1371/journal.pone.0236554. DOI: https://doi.org/10.1371/journal.pone.0236554

Wang L, Zhang Q, Zhang P, Wu B, Chen J, Gong J, et al. Development of an artificial intelligent model for pre-endoscopic screening of precancerous lesions in gastric cancer. Chinese Medicine (United Kingdom). 2024;19(1). Disponible en: http://doi.org/10.1186/s13020-024-00963-5. DOI: https://doi.org/10.1186/s13020-024-00963-5

Yang W, Jin X, Huang L, Jiang S, Xu J, Fu Y, et al. Clinical evaluation of an artificial intelligence-assisted cytological system among screening strategies for a cervical cancer high-risk population. BMC Cancer. 2024;24(1). Disponible en: http://doi.org/10.1186/s12885-024-12532-y. DOI: https://doi.org/10.1186/s12885-024-12532-y

O'Dwyer B, Macaulay K, Murray J, Jaana M. Improving Access to Specialty Pediatric Care: Innovative Referral and eConsult Technology in a Specialized Acute Care Hospital. Telemedicine and e-Health. 2024;30(5):1306-16. Disponible en: http://doi.org/10.1089/tmj.2023.0444. DOI: https://doi.org/10.1089/tmj.2023.0444

Mandl KD, Markwell D, MacDonald R, Szolovits P, Kohane IS. Public standards and patients' control: how to keep electronic medical records accessible but privateMedical information: access and privacyDoctrines for developing electronic medical recordsDesirable characteristics of electronic medical recordsChallenges and limitations for electronic medical recordsConclusionsCommentary: Open approaches to electronic patient recordsCommentary: A patient's viewpoint. Bmj. 2001;322(7281):283-7. Disponible en: http://doi.org/10.1136/bmj.322.7281.283. DOI: https://doi.org/10.1136/bmj.322.7281.283

Leung KC, Ng WWS, Siu YP, Hau AKC, Lee HK. Deep learning algorithms for predicting renal replacement therapy initiation in CKD patients: a retrospective cohort study. BMC Nephrology. 2024;25(1). Disponible en: http://doi.org/10.1186/s12882-024-03538-6. DOI: https://doi.org/10.1186/s12882-024-03538-6

Biourge V, Delmotte S, Feugier A, Bradley R, McAllister M, Elliott J. An artificial neural network-based model to predict chronic kidney disease in aged cats. Journal of Veterinary Internal Medicine. 2020;34(5):1920-31. Disponible en: http://doi.org/10.1111/jvim.15892. DOI: https://doi.org/10.1111/jvim.15892

Harchegani HB, Moghaddasi H. Designing a Hybrid Method of Artificial Neural Network and Particle Swarm Optimization to Diagnosis Polyps from Colorectal CT Images. International Journal of Preventive Medicine. 2024;15(1):4. Disponible en: http://doi.org/10.4103/ijpvm.ijpvm_373_22. DOI: https://doi.org/10.4103/ijpvm.ijpvm_373_22

Gupta MD, Bansal A, Sarkar PG, Girish MP, Jha M, Yusuf J, et al. Design and rationale of an intelligent algorithm to detect BuRnoUt in HeaLthcare workers in COVID era using ECG and artificiaL intelligence: The BRUCEE-LI study. Indian Heart Journal. 2021;73(1):109-13. Disponible en: http://doi.org/10.1016/j.ihj.2020.11.145. DOI: https://doi.org/10.1016/j.ihj.2020.11.145

Pruski M. Ethics framework for predictive clinical AI model updating. Ethics and Information Technology. 2023;25(3):48. Disponible en: http://doi.org/10.1007/s10676-023-09721-x. DOI: https://doi.org/10.1007/s10676-023-09721-x

Velu S, Gill SS, Murugesan SS, Wu H, Li X. CloudAIBus: a testbed for AI based cloud computing environments. Cluster Computing. 2024;30(2):1-29. Disponible en: http://doi.org/10.5755/j02.eie.36316. DOI: https://doi.org/10.1007/s10586-024-04562-9

Capellari Fabrizzio G, Moura de Oliveira L, Ghignatti da Costa D, Lorenzini Erdmann A, Guedes dos Santos JL. Virtual assistant: a tool for health co-production in coping with covid-19. Texto & Contexto-Enfermagem. 2023;32:e20220136. Disponible en: https://www.scielo.br/j/tce/a/34rx3BxNT446KTW9ZmYg64C/?format=pdf&lang=en. DOI: https://doi.org/10.1590/1980-265x-tce-2022-0136en

Gondode P, Duggal S, Garg N, Sethupathy S, Asai O, Lohakare P. Comparing patient education tools for chronic pain medications: Artificial intelligence chatbot versus traditional patient information leaflets. Indian Journal of Anaesthesia. 2024;68(7):631-6. Disponible en: http://doi.org/10.4103/ija.ija_204_24. DOI: https://doi.org/10.4103/ija.ija_204_24

Yurdakurban E, Topsakal KG, Duran GS. A comparative analysis of AI-based chatbots: Assessing data quality in orthognathic surgery related patient information. Journal of Stomatology, Oral and Maxillofacial Surgery. 2024;125(5). Disponible en: http://doi.org/10.1016/j.jormas.2023.101757. DOI: https://doi.org/10.1016/j.jormas.2023.101757

Becker CD, Kotter E. Communicating with patients in the age of online portals—challenges and opportunities on the horizon for radiologists. Insights into Imaging. 2022;13(1). Disponible en: http://doi.org/10.1186/s13244-022-01222-7. DOI: https://doi.org/10.1186/s13244-022-01222-7

Michalowski M, Wilk S, Michalowski W, Rao M, Carrier M. Provision and evaluation of explanations within an automated planning-based approach to solving the multimorbidity problem. Journal of Biomedical Informatics. 2024;156. Disponible en: http://doi.org/10.1016/j.jbi.2024.104681. DOI: https://doi.org/10.1016/j.jbi.2024.104681

Sánchez Suárez Y, Pérez Gamboa AJ, Hernández Nariño A, Yang Díaz-Chieng L, Marqués León M, Pancorbo Sandoval JA, et al. Cultura hospitalaria y responsabilidad social: un estudio mixto de las principales líneas para su desarrollo. Salud, Ciencia y Tecnología-Serie de Conferencias. 2023;2:451-. Disponible en: http://doi.org/10.56294/sctconf2023451. DOI: https://doi.org/10.56294/sctconf2023451

Kammerer David MI, Murgas Téllez B. La innovación tecnológica desde un enfoque de dinámica de sistema. Región Científica. 2024;3(1):2024217. Disponible en: http://doi.org/10.58763/rc2024217. DOI: https://doi.org/10.58763/rc2024217

Ledesma F, Malave González BE. Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica. 2022;1(1):202213. Disponible en: http://doi.org/10.58763/rc202214. DOI: https://doi.org/10.58763/rc202214

Raudales-Garcia EV, Acosta-Tzin JV, Aguilar-Hernández PA. Economía circular: una revisión bibliométrica y sistemática. Región Científica. 2024;3(1):2024192. Disponible en: http://doi.org/10.58763/rc2024192. DOI: https://doi.org/10.58763/rc2024192

Velásquez Castro LA, Paredes-Águila JA. Revisión sistemática sobre los desafíos que enfrenta el desarrollo e integración de las tecnologías digitales en el contexto escolar chileno, desde la docencia. Región Científica. 2024;3(1):2024226. Disponible en: http://doi.org/10.58763/rc2024226. DOI: https://doi.org/10.58763/rc2024226

Leyva Ricardo SE, Pancorbo Sandoval JA. Implementación de la economía circular en la gestión de la cadena de suministro: un análisis bibliométrico. Región Científica. 2024;3(2):2024315. Disponible en: http://doi.org/10.58763/rc2024315. DOI: https://doi.org/10.58763/rc2024315

Sánchez Suárez Y, Gómez Pérez M, Maynoldi Pino K, Marqués León M, Hernández Nariño A, Santos Pérez O. Contribución al perfeccionamiento del proceso de gestión de ingreso de pacientes con covid-19. Revista Cubana de Administración Pública y Empresarial. 2021;5(3):e181. Disponible en: https://apye.esceg.cu/index.php/apye/article/view/181. DOI: https://doi.org/10.33262/visionariodigital.v5i4.1901

Sánchez Suárez Y, Marqués León M, Hernández Nariño A, Santos Pérez O. Análisis estructural de la gestión de flujo de pacientes con coronavirus en Cuba. Ingeniería Industrial. 2021;42(3):1-13. Disponible en: http://scielo.sld.cu/scielo.php?pid=S1815-59362021000300029yscript=sci_arttextytlng=en.

Linares Giraldo M, Rozo Carvajal KJ, Sáenz López JT. Impacto de la pandemia en el comportamiento del comercio B2C en Colombia. Región Científica. 2023;2(1):202320. Disponible en: http://doi.org/10.58763/rc202320. DOI: https://doi.org/10.58763/rc202320

Mogrovejo Andrade JM. Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica. 2022;1(1):202211. Disponible en: http://doi.org/10.58763/rc202211. DOI: https://doi.org/10.58763/rc202211

Eltorai AEM, McKinney SE, Rockenbach MABC, Karuppiah S, Bizzo BC, Andriole KP. Primary care provider perspectives on the value of opportunistic CT screening. Clinical Imaging. 2024;112. Disponible en: http://doi.org/10.1016/j.clinimag.2024.110210. DOI: https://doi.org/10.1016/j.clinimag.2024.110210

Sendak MP, Liu VX, Beecy A, Vidal DE, Shaw K, Lifson MA, et al. Strengthening the use of artificial intelligence within healthcare delivery organizations: balancing regulatory compliance and patient safety. Journal of the American Medical Informatics Association. 2024;31(7):1622-7. Disponible en: http://doi.org/10.1093/jamia/ocae119. DOI: https://doi.org/10.1093/jamia/ocae119

Zink A, Boone C, Joynt Maddox KE, Chernew ME, Neprash HT. Artificial Intelligence in Medicare: Utilization, Spending, and Access to AI-Enabled Clinical Software. American Journal of Managed Care. 2024;30:SP473-SP7. Disponible en: http://doi.org/10.37765/ajmc.2024.89556. DOI: https://doi.org/10.37765/ajmc.2024.89556

Qian Y, Tao Y, Wu L, Zhou C, Liu F, Xu S, et al. Model based on the automated AI-driven CT quantification is effective for the diagnosis of refractory Mycoplasma pneumoniae pneumonia. Scientific Reports. 2024;14(1). Disponible en: http://doi.org/10.1038/s41598-024-67255-8. DOI: https://doi.org/10.1038/s41598-024-67255-8

Shafi I, Din S, Farooq S, de la Torre Díez I, Breñosa J, Martínez Espinosa JC, et al. Design and development of patient health tracking, monitoring and big data storage using Internet of Things and real time cloud computing. PLoS ONE. 2024;19(3 March). Disponible en: http://doi.org/10.1371/journal.pone.0298582. DOI: https://doi.org/10.1371/journal.pone.0298582

Su L, Liu S, Long Y, Chen C, Chen K, Chen M, et al. Chinese experts’ consensus on the application of intensive care big data. Frontiers in Medicine. 2023;10. Disponible en: http://doi.org/10.3389/fmed.2023.1174429. DOI: https://doi.org/10.1186/s40537-023-00719-2

Zhang X, Li L, Huang H, Xue A. Study on local selection pattern of acupuncture points for spastic paralysis of upper limbs after stroke based on medical big data analysis. Revista de Psiquiatria Clinica. 2023;50(5):77-84. Disponible en: http://doi.org/10.15761/0101-60830000000670.

da Silva AX, de Oliveira SC, de Araújo RFG. A proposal of an android application prototype for nursing diagnoses using artificial neural networks. Revista Cubana de Enfermeria. 2020;36(2). Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090703618&partnerID=40&md5=6e9c01f18f99d49ac183cbfb5a3b1d2b.

Abete R, Vecchi AL, Iacovoni A, Mortara A, Senni M. Telemedicine and Teleconsulting in the Era of COVID-19 Pandemic: A Useful Tool from Screening to Intensive Care Monitoring. Open Biomedical Engineering Journal. 2021;15:115-8. Disponible en: http://doi.org/10.2174/1874120702115010115. DOI: https://doi.org/10.2174/1874120702115010115

Brunetti ND, Curcio A, Nodari S, Parati G, Carugo S, Molinari M, et al. The Italian Society of Cardiology and Working Group on Telecardiology and Informatics 2023 updated position paper on telemedicine and artificial intelligence in cardiovascular disease. Journal of Cardiovascular Medicine. 2023;24:E168-E77. Disponible en: http://doi.org/10.2459/JCM.0000000000001447. DOI: https://doi.org/10.2459/JCM.0000000000001447

Salman OH, Taha Z, Alsabah MQ, Hussein YS, Mohammed AS, Aal-Nouman M. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Computer Methods and Programs in Biomedicine. 2021;209. Disponible en: http://doi.org/10.1016/j.cmpb.2021.106357. DOI: https://doi.org/10.1016/j.cmpb.2021.106357

Safdar MF, Nowak RM, Pałka P. Pre-Processing techniques and artificial intelligence algorithms for electrocardiogram (ECG) signals analysis: A comprehensive review. Computers in Biology and Medicine. 2024;170. Disponible en: http://doi.org/10.1016/j.compbiomed.2023.107908. DOI: https://doi.org/10.1016/j.compbiomed.2023.107908

Yin X, Wang K, Wang L, Yang Z, Zhang Y, Wu P, et al. Algorithms for classification of sequences and segmentation of prostate gland: an external validation study. Abdominal Radiology. 2024;49(4):1275-87. Disponible en: http://doi.org/10.1007/s00261-024-04241-8. DOI: https://doi.org/10.1007/s00261-024-04241-8

Zhang H, Zhao H, Guo Z. Artificial Intelligence-Based Atrial Fibrillation Recognition Method for Motion Artifact-Contaminated Electrocardiogram Signals Preprocessed by Adaptive Filtering Algorithm. Sensors. 2024;24(12). Disponible en: http://doi.org/10.3390/s24123789. DOI: https://doi.org/10.3390/s24123789

Guo Y, Huang C, Sheng Y, Zhang W, Ye X, Lian H, et al. Improve the efficiency and accuracy of ophthalmologists’ clinical decision-making based on AI technology. BMC Medical Informatics and Decision Making. 2024;24(1). Disponible en: http://doi.org/10.1186/s12911-024-02587-z. DOI: https://doi.org/10.1186/s12911-024-02587-z

Folson GK, Bannerman B, Atadze V, Ador G, Kolt B, McCloskey P, et al. Validation of Mobile Artificial Intelligence Technology–Assisted Dietary Assessment Tool Against Weighed Records and 24-Hour Recall in Adolescent Females in Ghana. Journal of Nutrition. 2023;153(8):2328-38. Disponible en: http://doi.org/10.1016/j.tjnut.2023.06.001. DOI: https://doi.org/10.1016/j.tjnut.2023.06.001

Sánchez-Suárez Y, Marqués-León M, Hernández-Nariño A, Santos-Pérez O. Hospital rough cut capacity planning in a General Surgery service. Dyna. 2023;90(225):45-54. Disponible en: http://doi.org/10.15446/dyna.v90n225.103774. DOI: https://doi.org/10.15446/dyna.v90n225.103774

Olaniyi O, Shah NH, Abalaka A, Olaniyi FG. Harnessing predictive analytics for strategic foresight: a comprehensive review of techniques and applications in transforming raw data to actionable insights. Available at SSRN 4635189. 2023. Disponible en: http://doi.org/10.2139/ssrn.4635189. DOI: https://doi.org/10.2139/ssrn.4635189

Hogan AH, Brimacombe M, Mosha M, Flores G. Comparing artificial intelligence and traditional methods to identify factors associated with pediatric asthma readmission. Academic pediatrics. 2022;22(1):55-61. Disponible en: http://doi.org/10.1016/j.acap.2021.07.015. DOI: https://doi.org/10.1016/j.acap.2021.07.015

Kabera JC, Mukanyangezi MF. Influence of inventory management practices on the availability of emergency obstetric drugs in Rwandan public hospitals: a case of Rwanda Southern Province. BMC Health Services Research. 2024;24(1). Disponible en: http://doi.org/10.1186/s12913-023-10459-x. DOI: https://doi.org/10.1186/s12913-023-10459-x

Allahham M, Sharabati AA, Hatamlah H, Ahmad AYB, Sabra S, Daoud MK. Big Data Analytics and AI for Green Supply Chain Integration and Sustainability in Hospitals. WSEAS Transactions on Environment and Development. 2023;19:1218-30. Disponible en: http://doi.org/10.37394/232015.2023.19.111. DOI: https://doi.org/10.37394/232015.2023.19.111

Pramanik S. AI-powered hospital accounting: Towards sound financial management. Recent Developments in Financial Management and Economics2024. p. 124-45. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190850264&doi=10.4018%2f979-8-3693-2683-1.ch008&partnerID=40&md5=e8807b9030dc1578f3a74ce851e42035.

Toma A, Senkaiahliyan S, Lawler PR, Rubin B, Wang B. Generative AI could revolutionize health care — but not if control is ceded to big tech. Nature. 2023;624(7990):36-8. Disponible en: http://doi.org/10.1038/d41586-023-03803-y. DOI: https://doi.org/10.1038/d41586-023-03803-y

Yin M, Tang R, Liu M, Han K, Lv X, Huang M, et al. Influence of optimization design based on artificial intelligence and internet of things on the electrocardiogram monitoring system. Journal of Healthcare Engineering. 2020;2020. Disponible en: http://doi.org/10.1155/2020/8840910. DOI: https://doi.org/10.1155/2020/8840910

Campaña Bastidas SE, Aguirre Cabrera A, Cabrera Mez HE, Cervelion AJ. Sistema en tiempo real para el monitoreo de variables médicas en pacientes hospitalizadas con redes WSN. Publicaciones e Investigación. 2019;13(1):27-44. Disponible en: http://doi.org/10.22490/25394088.2366. DOI: https://doi.org/10.22490/25394088.2366

García Cena CE, Silva L, Diaz Palencia FH, Moríñigo MI, Santos CP, Saltarén Pazmiño R, et al. Internet of medical things. Measurement of respiratory dynamics using wearable sensors in post-COVID-19 patients. Enfoque UTE. 2023;14(3):36-48. Disponible en: http://doi.org/10.29019/enfoqueute.972. DOI: https://doi.org/10.29019/enfoqueute.972

San Martín JL, Brathwaite-Dick O. La estrategia de gestión integrada para la prevención y el control del dengue en la región de las Américas. Revista Panamericana de Salud Pública. 2007;21(1):55-63. Disponible en: https://www.scielosp.org/pdf/rpsp/v21n1/a11v21n1.pdf. DOI: https://doi.org/10.1590/S1020-49892007000100011

Calvillo-Batllés P, Cerdá-Alberich L, Fonfría-Esparcia C, Carreres-Ortega A, Muñoz-Núñez CF, Trilles-Olaso L, et al. Development of severity and mortality prediction models for covid-19 patients at emergency department including the chest X-ray. Radiologia. 2022;64(3):214-27. Disponible en: http://doi.org/10.1016/j.rx.2021.09.011. DOI: https://doi.org/10.1016/j.rxeng.2021.09.004

García Moreno E, Sanchez Balcázar MdC. EFECTOS DE LA APLICACIÓN DE LA INTELIGENCIA ARTIFICIAL EN LA CONTABILIDAD Y LA TOMA DE DECISIONES. Gestión. 2023;1(1). Disponible en: https://revistap.ejeutap.edu.co/index.php/Gestion/article/view/71.

Handayani S, Hinchcliff R, Zami FA, Hasibuan ZA, editors. A Conceptual Paper: Model of Integrated Surveillance System of Tuberculosis Based on the Internet of Things (IoT) for Accelerating Indonesia Free Tuberculosis in 2030. 2022 International Seminar on Application for Technology of Information and Communication: Technology 40 for Smart Ecosystem: A New Way of Doing Digital Business, iSemantic 2022; 2022. Disponible en: http://doi.org/10.1109/iSemantic55962.2022.9920390. DOI: https://doi.org/10.1109/iSemantic55962.2022.9920390

Plaza Salto JG, Cristina S-Z, Acosta Urigüen MI, Orellana Cordero MP, Cedillo Orellana IP, Zambrano-Martínez JL. Speech recognition based on Spanish accent acoustic model. Enfoque UTE. 2022;13(3). Disponible en: http://doi.org/10.29019/enfoqueute.839. DOI: https://doi.org/10.29019/enfoqueute.839

Vaca-Orellana C, Valle Dávila M. Current Status and Challenges of IoT Research in the Ecuadorian Healthcare Sector: A Systematic Literature Review. Enfoque UTE. 2024;15(2):20-9. Disponible en: http://doi.org/10.29019/enfoqueute.1023. DOI: https://doi.org/10.29019/enfoqueute.1023

Raraz-Vidal J, Escobedo-Hinostroza A, Raraz-Vidal O. El impacto de la inteligencia artificial en la administración de la salud. Revista Peruana de Investigación en Salud. 2023;7(4):e2005-e. Disponible en: https://revistas.unheval.edu.pe/index.php/repis/article/download/2005/1783 DOI: https://doi.org/10.35839/repis.7.4.2005

Downloads

Published

2023-11-26

Issue

Section

Review

How to Cite

1.
Sánchez Suárez Y, Alawi AM, Leyva Ricardo SE. Hospital processes optimization based on artificial intelligence. LatIA [Internet]. 2023 Nov. 26 [cited 2025 Jan. 12];1:19. Available from: https://latia.ageditor.uy/index.php/latia/article/view/19