AI Integration in Education: A Correlational Study on Attitudes, Perceptions and Anxiety Among Pre-Service Teachers

Authors

DOI:

https://doi.org/10.62486/latia2025249

Keywords:

Pre-service teachers, Artificial Intelligence (AI), Attitude, Perceptions, Anxiety

Abstract

This study investigated pre-service teachers’ attitudes, perceptions, and anxiety toward artificial intelligence (AI), with gender, age, and socioeconomic status (SES) as demographic factors. Using a descriptive-quantitative correlational design, data were collected through an online survey from 150 valid respondents. Attitude was measured using the General Attitudes toward AI Scale, perception through an adapted 38-item instrument, and anxiety through the AI Anxiety Scale with four subscales. Descriptive statistics summarized levels, while t-tests, ANOVA, and Pearson correlation tested differences and relationships among variables. Results showed that respondents exhibited a generally positive attitude on favorable statements (M = 3,40), but expressed reservations on negative items (M = 2,49). Their overall perception was neutral (M = 2,68), while AI-related anxiety was moderate (M = 4,40), with higher levels in job replacement and sociotechnical blindness. Gender differences were not significant for attitude and perception, but female respondents reported significantly higher anxiety than males (p = ,010, large effect). No significant differences were observed across age groups, while SES revealed no variation in attitude and perception but showed significant differences in anxiety (p = ,026), with middle-class and poor respondents scoring higher than low-income groups. Correlation analysis indicated a moderate positive relationship between perception and anxiety (r = ,464, p < ,001), while attitude showed weak and nonsignificant links with both. Overall, the findings suggest cautious openness to AI among pre-service teachers, underscoring the need for teacher education programs to integrate AI-focused training and ethical discourse to reduce anxiety and enhance readiness for responsible AI integration.

References

Bond M, Khosravi H, De Laat M, Bergdahl N, Negrea V, Oxley E, et al. A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. Int J Educ Technol High Educ. 2024; 21:4. https://doi.org/10.1186/s41239-023-00436-z DOI: https://doi.org/10.1186/s41239-023-00436-z

Chai CS, Wang X, Xu C. An extended theory of planned behavior for modelling Chinese secondary school students’ intention to learn artificial intelligence. Mathematics. 2020;8(11):1–18. https://doi.org/10.3390/math8112089 DOI: https://doi.org/10.3390/math8112089

Chatterjee S, Bhattacharjee KK. Adoption of artificial intelligence in higher education: A quantitative analysis using structural equation modelling. Educ Inf Technol. 2020; 25:3443–63. https://doi.org/10.1007/s10639-020-10159-7 DOI: https://doi.org/10.1007/s10639-020-10159-7

du Boulay B. Artificial intelligence as an effective classroom assistant. IEEE Intell Syst. 2016; 31:76–81. https://doi.org/10.1109/MIS.2016.93 DOI: https://doi.org/10.1109/MIS.2016.93

Flores B, Amabao K, Aidil-Karanain F, Dumagay AH. Bachelor of Culture and Arts student’s attitude toward using digital games for learning. Sci Int (Lahore). 2023;35(3):357–61.

Francisco CI, Pantaleon CE, Lantaya GMA, Francisco WAR, Alieto EO. Understanding the attitude of senior high school students toward utilizing ChatGPT as a learning tool: A quantitative analysis. In: Hamdan RK, editor. Sustainable Data Management. Studies in Big Data, vol. 171. Cham: Springer; 2025. p. 37–49. DOI: https://doi.org/10.1007/978-3-031-83911-5_4

Funa A, Gabay RA. Policy guidelines and recommendations on AI use in teaching and learning: A meta synthesis study. Soc Sci Humanit Open. 2025;11:101221. https://doi.org/10.1016/j.ssaho.2024.101221 DOI: https://doi.org/10.1016/j.ssaho.2024.101221

Gapol PAM, Alieto EO, Capacio EA, Dumagay AH, Francisco CI, Vallejo RG. Preservice teachers’ extent of knowledge and willingness to adopt generative AI in higher education. In: González Vallejo R, Moukhliss G, Schaeffer E, Paliktzoglou V, editors. The Second International Symposium on Generative AI and Education (ISGAIE’2025). Lecture Notes on Data Engineering and Communications Technologies. Vol. 262. Cham: Springer; 2025. https://doi.org/10.1007/978-3-031-98476-1_6 DOI: https://doi.org/10.1007/978-3-031-98476-1_6

González Vallejo R. Evaluation of the effectiveness and personalization of artificial intelligence tools in language teaching: perspectives and future directions. Semin Med Writ Educ. 2024;3:594. https://doi.org/10.56294/mw2024.594 DOI: https://doi.org/10.56294/mw2024.594

Holmes W, Porayska-Pomsta K, editors. The ethics of artificial intelligence in education: Practices, challenges, and debates. London: Taylor & Francis; 2022. DOI: https://doi.org/10.4324/9780429329067

Wang S, Wang F, Zhu Z, Wang J, Tran T, Du Z. Artificial intelligence in education: A systematic literature review. Expert Syst Appl. 2024;213:118591. https://doi.org/10.1016/j.eswa.2024.124167 DOI: https://doi.org/10.1016/j.eswa.2024.124167

Zhai X, Chu X, Chai CS, Jong MSY, Istenic A, Spector M, et al. A review of artificial intelligence (AI) in education from 2010 to 2020. Complexity. 2021;2021:1–18. https://doi.org/10.1155/2021/8812542 DOI: https://doi.org/10.1155/2021/8812542

Ayanwale MA, Sanusi IT, Adelana OP, Aruleba KD, Oyelere SS. Teachers’ readiness and intention to teach artificial intelligence in schools. Comput Educ Artif Intell. 2022; 3:100099. https://doi.org/10.1016/j.caeai.2022.100099 DOI: https://doi.org/10.1016/j.caeai.2022.100099

Bergdahl N, Sjöberg J. Attitudes, perceptions and AI self-efficacy in K-12 education. Comput Educ Artif Intell. 2025;8:100358. https://doi.org/10.1016/j.caeai.2024.100358 DOI: https://doi.org/10.1016/j.caeai.2024.100358

Celik I, Dindar M, Muukkonen H, Järvelä S. The promises and challenges of artificial intelligence for educators: A systematic review of research. TechTrends. 2022;66(4):616–30. https://doi.org/10.1007/s11528-022-00715-y DOI: https://doi.org/10.1007/s11528-022-00715-y

Chiu TKF, Xia Q, Zhou X, Chai CS, Cheng M. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Comput Educ Artif Intell. 2023;4:100118. https://doi.org/10.1016/j.caeai.2022.100118 DOI: https://doi.org/10.1016/j.caeai.2022.100118

Clorion FDD, Alieto E, Fuentes J, Suicano DJ, Natividad ER, Miñoza M, et al. Artificial intelligence in academic writing in higher education in a country of emerging economy: An analysis of knowledge, perceived influence, extent of use, and perception. In: Lahby M, Maleh Y, Bucchiarone A, Schaeffer SE, editors. General Aspects of Applying Generative AI in Higher Education. Cham: Springer; 2024. DOI: https://doi.org/10.1007/978-3-031-65691-0_16

Santos ZMB, Cadano KJ, Gyawali YP, Alieto EO, Clorion FD. Navigating between conditions and convictions: Investigating the influence of sociogeographical factors on interest and attitudes toward artificial intelligence among secondary school teachers. In: Motahhir S, Bossoufi B, editors. Digital Technologies and Applications. ICDTA 2024. Lecture Notes in Networks and Systems, vol. 1101. Cham: Springer; 2024. DOI: https://doi.org/10.1007/978-3-031-68675-7_17

Cabato JU. From awareness to practice: Exploring the knowledge, attitudes, and practices of secondary ESL teachers in the Philippines toward ChatGPT in education. LatIA. 2025;3:360. https://doi.org/10.62486/latia2025360 DOI: https://doi.org/10.62486/latia2025360

Zawacki-Richter O, Marín VI, Bond M, Gouverneur F. Systematic review of research on artificial intelligence applications in higher education–where are the educators? Int J Educ Technol High Educ. 2019;16:39. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0

Zimotti G, Frances C, Whitaker L. The future of language education: Teachers’ perceptions about the surge of AI writing tools. Technol Lang Teach Learn. 2024;6(2):1136. https://doi.org/10.29140/tltl.v6n2.1136 DOI: https://doi.org/10.29140/tltl.v6n1.1136

Ayanwale MA, Owolabi PA, Molefi RR, Adeeko O, Ishola AM. Examining artificial intelligence literacy among pre-service teachers for future classrooms. Comput Educ Open. 2024; 6:100179. https://doi.org/10.1016/j.caeo.2024.100179 DOI: https://doi.org/10.1016/j.caeo.2024.100179

Bantoto FMO, Rillo R, Abequibel B, Mangila BB, Alieto EO. Is AI an effective “learning tool” in academic writing? Investigating the perceptions of third-year university students on the use of artificial intelligence in classroom instruction. In: International Conference on Digital Technologies and Applications. Cham: Springer Nature Switzerland; 2024. p. 72–81. https://doi.org/10.1007/978-3-031-68650-4_8 DOI: https://doi.org/10.1007/978-3-031-68650-4_8

Fuentes J, Clorion F, Abequibel B, Valerio A, Alieto EO. Understanding the attitude of teacher education students toward utilizing ChatGPT as a learning tool: A quantitative analysis. In: Motahhir S, Bossoufi B, editors. Digital Technologies and Applications. ICDTA 2024. Lecture Notes in Networks and Systems, vol. 1098. Cham: Springer; 2024. p. 82–93. DOI: https://doi.org/10.1007/978-3-031-68650-4_9

Gregorio TAD, Alieto EO, Natividad ERR, Tanpoco MR. Are preservice teachers “Totally PACKaged”? A quantitative study of preservice teachers’ knowledge and skills to ethically integrate artificial intelligence (AI)-based tools into education. In: Motahhir S, Bossoufi B, editors. Digital Technologies and Applications. ICDTA 2024. Lecture Notes in Networks and Systems, vol. 1100. Cham: Springer; 2024. DOI: https://doi.org/10.1007/978-3-031-68660-3_5

Anani GE, Nyamekye E, Bafour-Koduah D. Using artificial intelligence for academic writing in higher education: the perspectives of university students in Ghana. Discov Educ. 2025;4:46. https://doi.org/10.1007/s44217-025-00434-5 DOI: https://doi.org/10.1007/s44217-025-00434-5

Bajaj R, Sharma V. Smart education with artificial intelligence-based determination of learning styles. Procedia Comput Sci. 2018;132:834–42. https://doi.org/10.1016/j.procs.2018.05.095 DOI: https://doi.org/10.1016/j.procs.2018.05.095

Zheng L, Niu J, Zhong L, Gyasi JF. The effectiveness of artificial intelligence on learning achievement and learning perception: A meta-analysis. Interact Learn Environ. 2021;31(9):5650–64. https://doi.org/10.1080/10494820.2021.2015693 DOI: https://doi.org/10.1080/10494820.2021.2015693

Brandhofer G, Tengler K. On the acceptance of AI applications among teachers and teacher trainees. R&ESOURCE—Open Online Journal for Research and Education. 2024;11(3):7–25. https://doi.org/10.53349/resource.2024.i3.a1277 DOI: https://doi.org/10.53349/resource.2024.i3.a1277

Zhang C, Schießl J, Plößl L, Hofmann F, Gläser-Zikuda M. Acceptance of artificial intelligence among pre-service teachers: a multigroup analysis. Int J Educ Technol High Educ. 2023;20:49. https://doi.org/10.1186/s41239-023-00420-7 DOI: https://doi.org/10.1186/s41239-023-00420-7

Habib S., Vogel T., Thorne E. (2025). Student perspectives on creative pedagogy: Considerations for the Age of AI. Thinking Skills and Creativity, 56(3), Article 101767. https://doi.org/10.1016/j.tsc.2025.101767 DOI: https://doi.org/10.1016/j.tsc.2025.101767

Habib S, Vogel T, Anli X, Thorne E. How does generative artificial intelligence impact student creativity? J Creat. 2024;34(1):100072. https://doi.org/10.1016/j.yjoc.2023.100072 DOI: https://doi.org/10.1016/j.yjoc.2023.100072

Chan CKY, Lee KK. The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learn Environ. 2023;10(1):60. https://doi.org/10.1186/s40561-023-00269-3 DOI: https://doi.org/10.1186/s40561-023-00269-3

Dakakmi D, Safa N. Artificial intelligence in the L2 classroom: Implications and challenges on ethics and equity in higher education: A 21st century Pandora’s box. Comput Educ Artif Intell. 2023;5:100179. https://doi.org/10.1016/j.caeai.2023.100179 DOI: https://doi.org/10.1016/j.caeai.2023.100179

Humble N, Mozelius P. The threat, hype, and promise of artificial intelligence in education. Discov Artif Intell. 2022;2:22. https://doi.org/10.1007/s44163-022-00039-z DOI: https://doi.org/10.1007/s44163-022-00039-z

Mohd Amin MR, Ismail I, Sivakumaran VM. Revolutionizing education with artificial intelligence (AI)? Challenges and implications for open and distance learning (ODL). Soc Sci Humanit Open. 2025; 11:101308. https://doi.org/10.1016/j.ssaho.2025.101308 DOI: https://doi.org/10.1016/j.ssaho.2025.101308

Yang J, Blount Y, Amrollahi A. Artificial intelligence adoption in a professional service industry: A multiple case study. Technol Forecast Soc Change. 2024;201:123251. https://doi.org/10.1016/j.techfore.2024.123251 DOI: https://doi.org/10.1016/j.techfore.2024.123251

Alieto EO, Dumagay AH, Serdenia JRC, Labad EM, Galang SK, Vallejo RG. Attitude toward artificial intelligence among teacher aspirants in an emerging AI landscape: A gender‑based analysis. In: González Vallejo R, Moukhliss G, Schaeffer E, Paliktzoglou V, editors. The Second International Symposium on Generative AI and Education (ISGAIE’2025). Lecture Notes on Data Engineering and Communications Technologies, vol. 262. Springer; 2025. https://doi.org/10.1007/978-3-031-98476-1_39 DOI: https://doi.org/10.1007/978-3-031-98476-1_39

Balasa K, Dumagay AH, Alieto E, González Vallejo R. Gender and age dynamics in future educators’ attitudes toward AI integration in education: A sample from state-managed universities in Zamboanga Peninsula, Philippines. Semin Med Writ Educ. 2025;4:4668. https://doi.org/10.56294/mw2025668 DOI: https://doi.org/10.56294/mw2025668

Galindo-Domínguez H, Delgado H, Campo L, Losada D. Relationship between teachers’ digital competence and attitudes towards artificial intelligence in education. Int J Educ Res. 2024; 126:102381. https://doi.org/10.1016/j.ijer.2024.102381 DOI: https://doi.org/10.1016/j.ijer.2024.102381

Serdenia JR, Dumagay AH, Balasa KA, Capacio EA, Lauzon LDS. Attitude, acceptability, and perceived effectiveness of artificial intelligence in education: A quantitative cross-sectional study among future teachers. LatIA. 2025;3:313. DOI: https://doi.org/10.62486/latia2025313

Alieto EO, Abequibel-Encarnacion A, Estigoy E, Balasa K, Eijansantos A, Torres-Toukoumidis A. Teaching inside a digital classroom: A quantitative analysis of attitude, technological competence and access among teachers across subject disciplines. Heliyon. 2024;10(2):e24282. DOI: https://doi.org/10.1016/j.heliyon.2024.e24282

Asio JM, Soriano ID. The state of artificial intelligence (AI) use in higher education institutions (HEIs) in the Philippines. In: Mobo F, editor. Impacts of AI on Students and Teachers in Education 5.0. IGI Global Scientific Publishing; 2025. p. 523–52. https://doi.org/10.4018/979-8-3693-8191-5.ch019 DOI: https://doi.org/10.4018/979-8-3693-8191-5.ch019

Bagares U, Alieto E, Buslon J, Somblingo R, Cabangcala R. Perceptions of Filipino preservice teachers toward the quality of online learning during the COVID-19 pandemic. In: Motahhir S, Bossoufi B, editors. Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems. Cham: Springer; 2023. p. 421–30. DOI: https://doi.org/10.1007/978-3-031-29860-8_43

Berganio ME, Tanpoco M, Dumagay AH. Preservice teachers’ perceived level of digital literacy: A quantitative study from a developing country. In: Motahhir S, Bossoufi B, editors. ICDTA 2024. Lecture Notes in Networks and Systems, vol. 1101. Cham: Springer; 2024. DOI: https://doi.org/10.1007/978-3-031-68675-7_16

Clorion FD, Fuentes JO, Suicano DJ, Estigoy E, Serdenia JR, Alejandrino P, et al. Smartphones and syntax: A quantitative study on harnessing the role of mobile-assisted language learning in the digital classroom and applications for language learning. Procedia Comput Sci. 2025;257:7–14. DOI: https://doi.org/10.1016/j.procs.2025.03.004

Fernandez MA, Cabangcala C, Fanilag E, Cabangcala R, Balasa K, Alieto EO. Technology in education: An attitudinal investigation among prospective teachers from a country of emerging economy. In: Farhaoui Y, Hussain A, Saba T, Taherdoost H, Verma A, editors. Artificial Intelligence, Data Science and Applications. ICAISE 2023. Lecture Notes in Networks and Systems, vol. 837. Cham: Springer; 2024. DOI: https://doi.org/10.1007/978-3-031-48465-0_33

Funa AA. Digital badges as rewards in science education: Students’ perceptions and experiences. Dalat Univ J Sci. 2024;14(2):107–27. https://doi.org/10.37569/DalatUniversity.14.2.1212(2024) DOI: https://doi.org/10.37569/DalatUniversity.14.2.1212(2024)

Funa AA, Gabay RAE, Ricafort JD. Gamification in genetics: Effects of gamified instructional materials on the STEM students’ intrinsic motivation. Jurnal Pendidikan IPA Indonesia. 2021;10(4):462–73. https://doi.org/10.15294/jpii.v10i4.32143 DOI: https://doi.org/10.15294/jpii.v10i4.32143

Gonzales LI, Yusoo RJ, Miñoza M, Casimiro A, Devanadera A, Dumagay AH. Reading in the 21st century: Digital reading habit of prospective elementary language teachers. In: Farhaoui Y, Hussain A, Saba T, Taherdoost H, Verma A, editors. Artificial Intelligence, Data Science and Applications. ICAISE 2023. Lecture Notes in Networks and Systems, vol. 837. Cham: Springer; 2024.

Liao CW, Chen CH, Shih SJ. The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Comput Educ. 2019;133:43–55. DOI: https://doi.org/10.1016/j.compedu.2019.01.013

Tomaro QPV. ICT integration in the educational system of Philippines. J Gov Public Policy. 2018;5(3):259–82. https://doi.org/10.18196/jgpp.5399 DOI: https://doi.org/10.18196/jgpp.5399

Zhang K, Aslan AB. AI technologies for education: Recent research and future directions. Comput Educ Artif Intell. 2021;2:100025. DOI: https://doi.org/10.1016/j.caeai.2021.100025

Sáez‑Velasco S, Alaguero‑Rodríguez M, Rodríguez‑Cano S, Delgado‑Benito V. Students’ attitudes towards AI and how they perceive the effectiveness of AI in designing video games. Sustainability. 2025;17(7):3096. https://doi.org/10.3390/su17073096 DOI: https://doi.org/10.3390/su17073096

Farinosi M, Melchior C. ‘I use ChatGPT, but should I?’ A multi‐method analysis of students’ practices and attitudes towards AI in higher education. Eur J Educ. 2025;60(2):e70094. https://doi.org/10.1111/ejed.70094 DOI: https://doi.org/10.1111/ejed.70094

Niniss Y, Alla A, Azzimani T. Generative artificial intelligence in the context of the internationalization of higher education in Morocco: perceptions of use and effect on student engagement. In: Adoui A, editor. Internationalization of higher education and digital transformation. Cham: Palgrave Macmillan; 2024. https://doi.org/10.1007/978-3-031-76444-8_12 DOI: https://doi.org/10.1007/978-3-031-76444-8_12

Alkolaly M, Zeid F, Al-Shamali N, Khasawneh M, Tashtoush M. Comparing lecturers and students attitude towards the role of generative artificial intelligence systems in foreign language teaching and learning. Qubahan Acad J. 2025;5(3):1–15. https://doi.org/10.48161/qaj.v5n3a1583 DOI: https://doi.org/10.48161/qaj.v5n3a1583

Arkan B, Dallı ÖE, Varol B. The impact of ChatGPT training in the nursing process on nursing students’ problem-solving skills, attitudes towards artificial intelligence, competency, and satisfaction levels: Single-blind randomized controlled study. Nurse Educ Today. 2025;106765. https://doi.org/10.1016/j.nedt.2025.106765 DOI: https://doi.org/10.1016/j.nedt.2025.106765

Özdemir Aydın G, Küçükaydınoğlu S, Palloş A, Coşkun EY, Turan N. The relationship between first-year nursing students’ innovation skills and attitudes toward artificial intelligence: A multicentre study. Nurse Educ Pract. 2025;86:104429. https://doi.org/10.1016/j.nepr.2025.104429 DOI: https://doi.org/10.1016/j.nepr.2025.104429

Kann V. Students’ attitudes towards cheating before and after ChatGPT. In: Proceedings of the 30th ACM Conference on Innovation and Technology in Computer Science Education V. 1; 2025. https://doi.org/10.1145/3724363.3729108 DOI: https://doi.org/10.1145/3724363.3729108

Baek, C., Tate, T., & Warschauer, M. (2024). “ChatGPT seems too good to be true”: College students’ use and perceptions of generative AI. Computers and Education: Artificial Intelligence, 7, 100294. https://doi.org/10.1016/j.caeai.2024.100294 DOI: https://doi.org/10.1016/j.caeai.2024.100294

Ozbey F, Yasa Y. The relationships of personality traits on perceptions and attitudes of dentistry students towards AI. BMC Med Educ. 2025;25(1):26. https://doi.org/10.1186/s12909-024-06630-5 DOI: https://doi.org/10.1186/s12909-024-06630-5

Bewersdorff A, Hornberger M, Nerdel C, Schiff DS. AI advocates and cautious critics: How AI attitudes, AI interest, use of AI, and AI literacy build university students’ AI self-efficacy. Comput Educ Artif Intell. 2025;8:100340. https://doi.org/10.1016/j.caeai.2024.100340 DOI: https://doi.org/10.1016/j.caeai.2024.100340

Shittu, O. I., Busari, D. A., & Olonade, O. Y. (2025). Knowledge, Attitude, and Perception of Learners Towards the Use of ChatGPT in the University of Ibadan, Nigeria. International Journal of Sociology of Education, 14(2), 146-168. https://doi.org/10.17583/rise.15313 DOI: https://doi.org/10.17583/rise.15313

Yadav S. Digital pathways to excellence for bridging gaps and building competencies. In: Holistic approaches to teacher development: Leadership, pedagogical practices, and cognitive insights. 2025:287. https://doi.org/10.4018/979-8-3373-0472-4.ch012 DOI: https://doi.org/10.4018/979-8-3373-0472-4.ch012

Aldossary AS, Aljindi AA, Alamri JM. The role of generative AI in education: Perceptions of Saudi students. Contemp Educ Technol. 2024;16(4):ep536. https://doi.org/10.30935/cedtech/15496 DOI: https://doi.org/10.30935/cedtech/15496

Alenazi Y. Assessing readiness for AI integration in EFL courses: A case study of first-year university students in Saudi Arabia. Pak J Life Soc Sci. 2024;22(2). https://doi.org/10.57239/PJLSS-2024-22.2.00249 Alenazi Y. Assessing readiness for AI integration in EFL courses: A case study of first-year university students in Saudi Arabia. Pak J Life Soc Sci. 2024;22(2). DOI: https://doi.org/10.57239/PJLSS-2024-22.2.00249

Mudhsh BA, Muqaibal MH, Al-Maashani S, Al-Raimi M. Utilization of artificial intelligence tools in fostering English grammar and vocabulary among Omani EFL learners. World J Engl Lang. 2025;15(5):51–62. https://doi.org/10.5430/wjel.v15n5p51 DOI: https://doi.org/10.5430/wjel.v15n5p51

Zeevy-Solovey, O. (2024). Comparing peer, ChatGPT, and teacher corrective feedback in EFL writing: Students’ perceptions and preferences. Technology in Language Teaching and Learning, 6(3), 1482. https://doi.org/10.29140/tltl.v6n3.1482 DOI: https://doi.org/10.29140/tltl.v6n3.1482

González Pastor D. Introducció a la traducció automàtica a l’aula de traducció: una enquesta sobre la conducta i la percepció dels estudiants. Tradumàtica Tecnologies De La Traducció. 2021;(19):47–65. Available from: https://doi.org/10.5565/rev/tradumatica.273 DOI: https://doi.org/10.5565/rev/tradumatica.273

Alsudairy NA, Eltantawy MM. Special education teachers’ perceptions of using artificial intelligence in educating students with disabilities. Journal of Intellectual Disability - Diagnosis and Treatment. 2024;12(2):92–102. https://doi.org/10.6000/2292-2598.2024.12.02.5 DOI: https://doi.org/10.6000/2292-2598.2024.12.02.5

Al-Raimi M, Mudhsh BA, Al-Yafaei Y, Al-Maashani S. Utilizing artificial intelligence tools for improving writing skills: Exploring Omani EFL learners’ perspectives. Forum for Linguistic Studies. 2024;6(2):1177. https://doi.org/10.59400/fls.v6i2.1177 DOI: https://doi.org/10.59400/fls.v6i2.1177

Wang YY, Wang YS. Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interact Learn Environ. 2022;30(4):619–34. https://doi.org/10.1080/10494820.2019.1674887 DOI: https://doi.org/10.1080/10494820.2019.1674887

Maghanoy J, Tahil M, Sulasula J, Vallejo RG, Dumagay AH, Alieto EO. Gender and educational attainment dynamics on artificial intelligence anxiety among educators with emerging understanding. In: González Vallejo R, Moukhliss G, Schaeffer E, Paliktzoglou V, editors. The Second International Symposium on Generative AI and Education (ISGAIE’2025). Lecture Notes on Data Engineering and Communications Technologies. Vol. 262. Springer; 2025. https://doi.org/10.1007/978-3-031-98476-1_40 DOI: https://doi.org/10.1007/978-3-031-98476-1_40

Lund BD, Mannuru NR, Agbaji D. AI anxiety and fear: A look at perspectives of information science students and professionals towards artificial intelligence. J Inf Sci. 2024. https://doi.org/10.1177/01655515241282001 DOI: https://doi.org/10.1177/01655515241282001

Sallam, M., Al-Mahzoum, K., Almutairi, Y. M., Alaqeel, O., Abu Salami, A., Almutairi, Z. E., Alsarraf, A. N., & Barakat, M. (2024). Anxiety among medical students regarding generative artificial intelligence models: A pilot descriptive study. International Medical Education, 3(4), 406–425. https://doi.org/10.3390/ime3040031 DOI: https://doi.org/10.3390/ime3040031

Chow TS, To K. Mindsets matter: A mediation analysis of the role of a technological growth mindset in generative artificial intelligence usage in higher education. Educ Sci. 2025;15(3):310. https://doi.org/10.3390/educsci15030310 DOI: https://doi.org/10.3390/educsci15030310

Adu KK. Artificial Intelligence in Academic Libraries: Threats, Opportunities, and Anxiety Levels. J Libr Inf Serv Distance Learn. 2025:1–20. https://doi.org/10.1080/1533290X.2025.2534462 DOI: https://doi.org/10.1080/1533290X.2025.2534462

Zhu W, Huang L, Zhou X, Li X, Shi G, Ying J, Wang C. Could AI ethical anxiety, perceived ethical risks and ethical awareness about AI influence university students’ use of generative AI products? An ethical perspective. Int J Hum Comput Interact. 2024;41(1):742–64. https://doi.org/10.1080/10447318.2024.2323277 DOI: https://doi.org/10.1080/10447318.2024.2323277

Li W. A study on factors influencing designers’ behavioral intention in using AI-generated content for assisted design: Perceived anxiety, perceived risk, and UTAUT. Int J Hum Comput Interact. 2025;41(2):1064–1077. https://doi.org/10.1080/10447318.2024.2310354 DOI: https://doi.org/10.1080/10447318.2024.2310354

Shi W, Shakibaei G. Insights into the effectiveness of artificial intelligence-integrated speaking instruction in enhancing speaking skills and social–emotional competence as well as reducing demotivation and shyness. Eur J Educ. 2025;60(3):e70174. https://doi.org/10.1111/ejed.70174 DOI: https://doi.org/10.1111/ejed.70174

Wang S, Wang Y. Language attitude and GenAI attitude of struggling EFL learners: A moderated mediation model of enjoyment and anxiety. Eur J Educ. 2025;60(3):e70172. https://doi.org/10.1111/ejed.70172 DOI: https://doi.org/10.1111/ejed.70172

Lacap JPG, Alminar A, Baltazar JKB, Cabral R, Catibog JA, Cunanan M, et al. Does chatbot interaction drive satisfaction and loyalty? Exploring technology anxiety, need for human interaction and creepiness. Asia Pac J Bus Adm. 2025. https://doi.org/10.1108/APJBA-03-2025-0155 DOI: https://doi.org/10.1108/APJBA-03-2025-0155

Xie, X.-Z., & Duan, Q.-T. (2025). The role of AI face-swapping technology anxiety in negative eWOM contagion: SEM and fsQCA findings. Humanities and Social Sciences Communications, 12(1), 876. https://doi.org/10.1057/s41599-025-05222-y DOI: https://doi.org/10.1057/s41599-025-05222-y

Alieto E, Devanadera A, Buslon J. Women of K-12: Exploring teachers’ cognition in language policy implementation. Asian EFL J. 2020;24(4.1):143–62. DOI: https://doi.org/10.2139/ssrn.3588029

Bacang B, Rillo R, Alieto O. The gender construct in the use of rhetorical appeals, hedges and boosters in ESL writing: A discourse analysis. Asian EFL J. 2019;25(52):210–24.

Dumagay, A. H., Balasa, K. A., Kunting, A. F., & Cabangcala, R. B. (2025). AI acceptance among prospective social studies and culture and arts education students. In K. Arai (Ed.), Intelligent computing. CompCom 2025 (Lecture Notes in Networks and Systems, Vol. 1426). Springer. https://doi.org/10.1007/978-3-031-92611-2_11 DOI: https://doi.org/10.1007/978-3-031-92611-2_11

Cabangcala R, Alieto EO, Estigoy E, Delos Santos M, Torres J. When language learning suddenly becomes online: Analyzing English as Second Language Learners’ (ELLs) attitude and technological competence. TESOL Int J. 2021;16(4.3):115-131.

Casiano PKM, Encarnacion BA, Jaafar SH, Alieto EO. Digital-game-based language learning: An exploration of attitudes among teacher aspirants in a non-metropolitan area. In: Fortino G, Kumar A, Swaroop A, Shukla P, editors. Proceedings of Third International Conference on Computing and Communication Networks. ICCCN 2023. Lecture Notes in Networks and Systems, vol 917. Singapore: Springer. DOI: https://doi.org/10.1007/978-981-97-0892-5_34

Devanadera A, Alieto O. Lexical bias among Tagalog-speaking Filipino preschool children. Asian EFL J. 2019;24(4):207–28.

Gapol PA, Bantoto FM, Fuentes J, Pil AO, Sarona J, Lacao-Lacao L, et al. Is sustainability a ‘lesson plan’ for preservice teachers? Extent of environmental awareness in the framework of waste management among preservice teachers. Procedia Comput Sci. 2024;236:527-532. DOI: https://doi.org/10.1016/j.procs.2024.05.062

Gonzales LI, Yusoo RJ, Miñoza M, Casimiro A, Devanadera A, Dumagay AH. Reading in the 21st century: Digital reading habit of prospective elementary language teachers. In: Farhaoui Y, Hussain A, Saba T, Taherdoost H, Verma A, editors. Artificial Intelligence, Data Science and Applications. ICAISE 2023. Lecture Notes in Networks and Systems, vol. 837. Cham: Springer; 2024. DOI: https://doi.org/10.1007/978-3-031-48465-0_18

Lee A, Alieto E. Analyzing teaching self-efficacy correlates in virtual education: A gender-driven structural equation modeling approach. Malays J ELT Res. 2023;20(2):110–28. DOI: https://doi.org/10.52696/TCZP6102

Pahulaya V, Reyes A, Buslon J, Alieto EO. Gender divide in attitude towards Chavacano and cognition towards mother tongue among prospective language teachers. Asian EFL. 2020;27(3.1):41–64.

Schepman A, Rodway P. Initial validation of the general attitudes toward artificial intelligence scale: Confirmatory validation and associations with personality, corporate distrust, and general trust. Comput Human Behav Rep. 2020;1:100014. https://doi.org/10.1016/j.chbr.2020.100014 DOI: https://doi.org/10.1016/j.chbr.2020.100014

Brauner P, Hick A, Philipsen R, Ziefle M. What does the public think about artificial intelligence? A criticality map to understand bias in the public perception of AI. Front Comput Sci. 2023;5:1113903. https://doi.org/10.3389/fcomp.2023.1113903 DOI: https://doi.org/10.3389/fcomp.2023.1113903

Li J, Huang J-S. Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technol Soc. 2020 63:101410. doi: 10.1016/j.techsoc.2020.101410. DOI: https://doi.org/10.1016/j.techsoc.2020.101410

Downloads

Published

2025-10-01

Issue

Section

Original

How to Cite

1.
Devanadera AC. AI Integration in Education: A Correlational Study on Attitudes, Perceptions and Anxiety Among Pre-Service Teachers. LatIA [Internet]. 2025 Oct. 1 [cited 2025 Oct. 11];3:249. Available from: https://latia.ageditor.uy/index.php/latia/article/view/249