The Impact of Artificial Intelligence on the Development of Methods of Critical Text Analysis in Modern Philology
DOI:
https://doi.org/10.62486/latia2025295Keywords:
Neural networks, Linguistic models, Text analysis, Natural language processingAbstract
Introduction: this study aimed to evaluate the influence of artificial intelligence (AI), particularly deep learning and natural language processing (NLP) technologies, on the transformation of critical text analysis in contemporary philology.
Aim: the research focused on how AI-driven approaches modify traditional linguistic and literary methodologies.
Methods: a qualitative literature review was conducted to examine recent academic contributions at the intersection of philology and AI. Sources were selected from peer-reviewed journals covering linguistics, computational philology, and digital humanities.
Results: the analysis revealed that AI-based algorithms, especially deep learning models, enhanced the detection of latent textual structures such as lexical patterns, stylistic markers, and semantic clusters. These technologies facilitated more accurate authorship attribution and allowed for the investigation of large corpora beyond the capacities of manual analysis. However, findings indicated that while AI could identify patterns and linguistic regularities, it lacked the ability to interpret deeper cultural, emotional, and symbolic meanings embedded in literary texts.
Conclusions: the integration of AI into philological research offers valuable computational tools that expand analytical possibilities without displacing the interpretive role of the human scholar. AI technologies serve as a methodological extension, enhancing the precision and scope of critical analysis. Ultimately, the use of AI enriches the study of literature by uncovering patterns inaccessible to traditional methods, while preserving the necessity of human insight for contextual and interpretative depth.
References
Wang H, Wu H, He Z, Huang L, Church KW. Progress in machine translation. Engineering (Beijing, China). 2022;18:143–53. https://doi.org/10.1016/j.eng.2021.03.023 DOI: https://doi.org/10.1016/j.eng.2021.03.023
Jiang K, Lu X. Natural language processing and its applications in machine translation: A diachronic review. In: 2020 IEEE 3rd International Conference of Safe Production and Informatisation (IICSPI). IEEE; 2020. p. 1–6. https://doi.org/10.1109/IICSPI51290.2020.9332458 DOI: https://doi.org/10.1109/IICSPI51290.2020.9332458
Stahlberg F. Neural Machine Translation: A Review. J Artif Intell Res. 2020;69:343–418. https://doi.org/10.1613/jair.1.12007 DOI: https://doi.org/10.1613/jair.1.12007
Jolley JR, Maimone L. Thirty years of machine translation in language teaching and learning: A review of the literature. L2 J. 2022;14(1). https://doi.org/10.5070/l214151760 DOI: https://doi.org/10.5070/L214151760
Schmitt PA. Translation 4.0 – evolution, revolution, innovation or disruption? Lebende Sprachen. 2019;64(2):193–229. https://doi.org/10.1515/les-2019-0013 DOI: https://doi.org/10.1515/les-2019-0013
Léon J. Information theory: Transfer of terms, concepts and methods. In: Automating Linguistics. Springer International Publishing; 2021. p. 49–67. https://doi.org/10.1007/978-3-030-70642-5_5 DOI: https://doi.org/10.1007/978-3-030-70642-5_5
Morin O, Kelly P, Winters J. Writing, graphic codes, and asynchronous communication. Top Cogn Sci. 2020;12(2):727–43. https://doi.org/10.1111/tops.12386 DOI: https://doi.org/10.1111/tops.12386
Veale T, Cook M. Twitterbots: Making machines that make meaning. MIT Press; 2018. https://ieeexplore.ieee.org/book/8555192 DOI: https://doi.org/10.7551/mitpress/10859.001.0001
Liang JC, Hwang GJ, Chen MRA, Darmawansah D. Roles and research foci of artificial intelligence in language education: an integrated bibliographic analysis and systematic review approach. Interact Learn Environ. 2021:1–27. https://doi.org/10.1080/10494820.2021.1958348 DOI: https://doi.org/10.1080/10494820.2021.1958348
Brooks RA. Intelligence Without Reason. In: The Artificial Life Route to Artificial Intelligence. Routledge; 2018. p. 25–81. https://doi.org/10.4324/9781351001885-2 DOI: https://doi.org/10.4324/9781351001885-2
Li J. A comparative study of keyword extraction algorithms for English texts. J Intell Syst. 2021;30(1):808–15. https://doi.org/10.1515/jisys-2021-0040 DOI: https://doi.org/10.1515/jisys-2021-0040
Graziosi B, Haubold J, Cowen-Breen C, Brooks C. Machine learning and the future of philology: A case study. TAPA. 2023;153(1):253–84. https://doi.org/10.1353/apa.2023.a901022 DOI: https://doi.org/10.1353/apa.2023.a901022
Assunção G, Patrão B, Castelo-Branco M, Menezes P. An overview of emotion in artificial intelligence. IEEE Trans Artif Intell. 2022;3(6):867–86. https://doi.org/10.1109/TAI.2022.3159614 DOI: https://doi.org/10.1109/TAI.2022.3159614
Crane G. Beyond translation: Language hacking and philology. Harv Data Sci Rev. 2019;1(2). https://doi.org/10.1162/99608f92.282ad764 DOI: https://doi.org/10.1162/99608f92.282ad764
Wei C. Copyright protection and data reliability of AI-written literary creations in smart city. Secur Commun Netw. 2022;2022:1–13. https://doi.org/10.1155/2022/6498468 DOI: https://doi.org/10.1155/2022/6498468
Hrachova I, Bakhov I, Ishchuk N, Dzhydzhora L, Strashko I. Analysing the impact of artificial intelligence on the development of contemporary philology: The use of automated tools in linguistic research. Arch Sci. 2024;74(2):110–7. https://doi.org/10.62227/as/74216 DOI: https://doi.org/10.62227/as/74216
Strashko I, Melnyk I, Kozak V, Torchynska N, Dyiak O. Linguistic analysis of texts in philological research: The use of Salesforce Einstein Artificial Intelligence. Forum Linguist Stud. 2024;6(3):247–59. https://doi.org/10.30564/fls.v6i3.6601 DOI: https://doi.org/10.30564/fls.v6i3.6601
Markus M, Kirner-Ludwig M. A philologist’s perspective on Artificial Intelligence – a case study into English Dialect Dictionary Online 4.0. Int J Lexicogr. 2024;37(2):226–52. https://doi.org/10.1093/ijl/ecae001 DOI: https://doi.org/10.1093/ijl/ecae001
Carpitella A, Carpitella S. Artificial intelligence enriching contributions from multiple perspectives in ancient text analysis. In: Lecture Notes in Networks and Systems. Springer Nature Switzerland; 2024. p. 167–75. https://doi.org/10.1007/978-3-031-70018-7_19 DOI: https://doi.org/10.1007/978-3-031-70018-7_19
Van Heerden I, Bas A. AI as author: Bridging the gap between machine learning and literary theory. J Artif Intell Res. 2021;71:175–89. https://orcid.org/0000-0002-3833-6023 DOI: https://doi.org/10.1613/jair.1.12593
Jones N. Experiential literature? Comparing the work of AI and human authors. APRIA J. 2022;5(5):41–57. https://doi.org/10.37198/APRIA.04.05.a5 DOI: https://doi.org/10.37198/APRIA.04.05.a5
Heflin JA. AI-generated literature and the vectorized Word [dissertation]. Massachusetts Institute of Technology; 2020. https://dspace.mit.edu/handle/1721.1/127563
Da NZ. The computational case against computational literary studies. Crit Inq. 2019;45(3):601–39. https://doi.org/10.1086/702594 DOI: https://doi.org/10.1086/702594
Chun J, Elkins K. What the rise of AI means for narrative studies: A response to “why computers will never read (or write) literature” by Angus Fletcher. Narrative. 2022;30(1):104–13. https://doi.org/10.1353/nar.2022.0005 DOI: https://doi.org/10.1353/nar.2022.0005
Barron L. AI and literature. In: AI and Popular Culture. Emerald Publishing Limited; 2023. p. 47–87. https://doi.org/10.1108/978-1-80382-327-020231003 DOI: https://doi.org/10.1108/978-1-80382-327-020231003
Bajohr H. Algorithmic empathy: On two paradigms of digital generative literature and the need for a critique of AI works. University of Basel; 2020. https://doi.org/10.5451/UNIBAS-EP79106 DOI: https://doi.org/10.12685/bmcct.2020.004
Lévy P. Calculer la sémantique avec le langage IEML. Humanit Numér. 2023;8. https://doi.org/10.4000/revuehn.3836 DOI: https://doi.org/10.4000/revuehn.3836
Chagué A, Chiffoleau F, Levenson MG, Scheithauer H, Pinche A. Chaînes d'acquisition, de traitement et de publication du texte [dissertation]. Consortium Ariane-Axe 1; 2024. https://hal.science/hal-04734959/
Carré D, Georges F, Valluy J. Les Humanités numériques, quelles définitions? In: Questionner les humanités numériques: Positions and propositions of the sciences of information and communication. 2021. p. 44. https://hal.science/hal-03276593v1/file/Questionner-humanites-numeriques.pdf#page=44
Miras G, Lefevre M, Arbach N, Rapilly L, Dumarski T. Apports d'un outil d'intelligence artificielle à l'enseignement-apprentissage des langues. In: EIAH'2019: Environnements Informatiques pour l'Apprentissage Humain. 2019. https://shs.hal.science/halshs-02332916/
Larsonneur C. Intelligence artificielle ET/OU diversité linguistique: les paradoxes du traitement automatique des langues. Hybrid. 2021;7. https://doi.org/10.4000/hybrid.650 DOI: https://doi.org/10.4000/hybrid.650
Jouitteau M. Guide de survie des langues minorisées à l’heure de l’intelligence artificielle: Appel aux communautés parlantes. Lapurdum. 2023;24:199–217. https://doi.org/10.4000/127u1 DOI: https://doi.org/10.4000/127u1
Soh M, Ouambo MAY, Kouesso JR. Analyse de la vitalité des langues camerounaises à l'aide de techniques d'intelligence artificielle. Rev Afr Rech Inf Math Appl. 2021. https://hal.science/hal-03410112/
Schurster K, Ferreiro-Vázquez Ó. Traduction et paratraduction en tant que stratégies de résistance à la réification à l’ère de l’Intelligence Artificielle (IA). Stud Rom Posn. 2024;51(3):101–14. https://doi.org/10.14746/strop.2024.51.3.8 DOI: https://doi.org/10.14746/strop.2024.51.3.8
Silvério Costa B, Viana Santos J, Namiuti C. Transcription manuelle et automatique de textos historiques manuscrits à l'aide du logiciel Lapelinc Transcriptor. Colóquio do Museu Pedagógico. 2022;14(1):2885–90. http://anais.uesb.br/index.php/cmp/article/viewFile/10903/10706
Pereira Emilio MA. Perspectivas dos bolsistas e voluntários sobre o processo de tradução num centro de escrita paranaense [Trabalho de Conclusão de Curso]. Universidade Estadual de Ponta Grossa; 2023. https://ri.uepg.br/monografias/handle/123456789/315
Leal LCB. Tradução, conceituação sistematizada, tecnologia, filosofia [dissertation]. Universidade Federal de Santa Catarina; 2022. https://repositorio.ufsc.br/bitstream/handle/123456789/244450/PGET0557-T.pdf?sequence=1&isAllowed=y
Khasawneh MAS. The potential of AI in facilitating cross-cultural communication through translation. J Namib Stud Hist Polit Cult. 2023;37:107–30. https://namibian-studies.com/index.php/JNS/article/view/4654/3256
Elkins K. In search of a translator: Using AI to evaluate what's lost in translation. Front Comput Sci. 2024;6:1444021. https://doi.org/10.3389/fcomp.2024.1444021 DOI: https://doi.org/10.3389/fcomp.2024.1444021
Gervais DJ. AI derivatives: The application to the derivative work right to literary and artistic productions of AI machines. Seton Hall Law Rev. 2021;52:1111. https://heinonline.org/HOL/LandingPage?handle=hein.journals/shlr52&div=37&id=&page= DOI: https://doi.org/10.2139/ssrn.4022665
Moneus AM, Sahari Y. Artificial intelligence and human translation: A contrastive study based on legal texts. Heliyon. 2024;10(6). https://www.cell.com/heliyon/fulltext/S2405-8440(24)04137-9 DOI: https://doi.org/10.1016/j.heliyon.2024.e28106
Shen X, Qin R. RETRACTED: Searching and learning English translation long text information based on heterogeneous multiprocessors and data mining. Microprocess Microsyst. 2021;82(103895):103895. https://doi.org/10.1016/j.micpro.2021.103895 DOI: https://doi.org/10.1016/j.micpro.2021.103895
Bi S. Intelligent system for English translation using automated knowledge base. J Intell Fuzzy Syst. 2020;39(4):5057–66. https://doi.org/10.3233/jifs-179991 DOI: https://doi.org/10.3233/JIFS-179991
Lindes P. Constructing meaning, piece by piece: A computational cognitive model of human sentence comprehension [dissertation]. University of Michigan; 2022. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/172668/plindes_1.pdf?sequence=1&isAllowed=y
Kim MY, Atakishiyev S, Babiker HKB, Farruque N, Goebel R, Zaïane OR, et al. A multi-component framework for the analysis and design of explainable artificial intelligence. Mach Learn Knowl Extr. 2021;3(4):900–21. https://doi.org/10.3390/make3040045 DOI: https://doi.org/10.3390/make3040045
Pishchanska VM. The specificity of the aesthetic in the formation of modern Ukrainian culture. Cult Stud Almanac. 2024;(2):373–9. https://doi.org/10.31392/cult.alm.2024.2.46 DOI: https://doi.org/10.31392/cult.alm.2024.2.46
Russin J, Jo J, O’Reilly RC, Bengio Y. Compositional generalization in a deep seq2seq model by separating syntax and semantics. arXiv [cs.LG]. 2019. https://doi.org/10.48550/ARXIV.1904.09708
Sowmya KS, Ananthanarayana VS. Discovering composable web services using functional semantics and service dependencies based on natural language requests. Inf Syst Front. 2019;21(1):175–89. https://doi.org/10.1007/s10796-017-9738-2 DOI: https://doi.org/10.1007/s10796-017-9738-2
Krasniuk S. Effective machine learning in linguistics. In: Scientific Collection “InterConf”, Proceedings of the 4th International Scientific and Practical Conference “Scientific Progressive Methods and Tools,” Riga, Latvia, October 6–8, 2024. Riga: Avots; 2024. No. 219, p. 57–62. https://archive.interconf.center/index.php/conference-proceeding/issue/view/6-8.10.2024
Yuriy R, Tatarina O, Kaminskyy V, Silina T, Bashkirova L. Modern methods and prospects for using artificial intelligence in disease diagnostics: A narrative review. Futurity Medicine. 2024;3(4). https://doi.org/10.57125/fem.2024.12.30.02 DOI: https://doi.org/10.57125/FEM.2024.12.30.02
Devadze AM, Gechbaia B. Using virtual reality in the educational process to increase students’ motivation and interest. E-Learning Innovations Journal. 2024;2(2):21–35. https://doi.org/10.57125/elij.2024.09.25.02 DOI: https://doi.org/10.57125/ELIJ.2024.09.25.02
Rodinova N, Pylypchuk N, Domashenko S, Havrylyuk I, Androsovych A. Ukrainian economy in the era of digital branding: Risks and opportunities. Futurity Economics&Law. 2024;4(4):4–24. https://doi.org/10.57125/fel.2024.12.25.01 DOI: https://doi.org/10.57125/FEL.2024.12.25.01
Bingham C. Education and artificial intelligence at the scene of writing: A derridean consideration. Futurity Philosophy. 2024;3(4):34–46. https://doi.org/10.57125/fp.2024.12.30.03 DOI: https://doi.org/10.57125/FP.2024.12.30.03
Vainola R. Evaluating the effectiveness of social media as a means of strengthening family values among young people. Future of Social Sciences. 2024;2(4):24–38. https://doi.org/10.57125/FS.2024.12.20.02 DOI: https://doi.org/10.57125/FS.2024.12.20.02
Yurko I, Riabtsev D. The role of investment, innovation, and efficient use of resources in ensuring long-term economic sustainability. Law, Business and Sustainability Herald. 2024;4(1):4–20. https://lbsherald.org/index.php/journal/article/view/62
Amankeldin, D., Kurmangaziyeva, L., Mailybayeva, A., Glazyrina, N., Zhumadillayeva, A., & Karasheva, N. (2023). Deep Neural Network for Detecting Fake Profiles in Social Networks. Computer Systems Science & Engineering, 47(1). https://doi.org/10.32604/csse.2023.039503 DOI: https://doi.org/10.32604/csse.2023.039503
Dorogyy, Y., & Kolisnichenko, V. (2018, October). Unsupervised Pre-Training with Spiking Neural Networks in Semi-Supervised Learning. In 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC) (pp. 1-4). IEEE. https://ieeexplore.ieee.org/abstract/document/8516733 DOI: https://doi.org/10.1109/SAIC.2018.8516733
Bondarchuk, J., Dvorianchykova, S., Yuhan, N., & Holovenko, K. (2024). Strategic approaches: Practical applications of English communication skills in various real-life scenarios. Multidisciplinary Science Journal. https://er.knutd.edu.ua/handle/123456789/27490 DOI: https://doi.org/10.31893/multiscience.2025100
Yertay Sultan, Gulnaz Dautova, Dina Alkebayeva, Akkibat Akzhigitova, Zhansaya Aden, Analysis of modern strategies for using artificial intelligence technologies in the creation of fantasy content, Digital Scholarship in the Humanities, Volume 40, Issue 1, April 2025, Pages 295–307, https://doi.org/10.1093/llc/fqae090 DOI: https://doi.org/10.1093/llc/fqae090
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yuliia Rud, Nataliia Sapotnitska , Natalia Chaplynska , Mykola Palasevych, Oksana Kudriavtseva (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.