Artificial Intelligence Applied to Telemedicine: opportunities for healthcare delivery in rural areas
DOI:
https://doi.org/10.62486/latia20233Keywords:
Artificial Intelligence, Telemedicine, Rural Healthcare, Continuous Monitoring, Clinically Validated AlgorithmsAbstract
The integration of artificial intelligence (AI) in telemedicine is revolutionizing the provision of healthcare services, especially in rural areas. These technologies enable the overcoming of geographical and resource barriers, facilitating precise diagnoses, personalized recommendations, and continuous monitoring through portable devices. AI systems analyze patient data and suggest the most appropriate care options based on their health profile, thus optimizing the efficiency of the healthcare system and improving patient satisfaction. In addition, the automation of administrative tasks through AI frees up time for healthcare professionals to concentrate on direct care. To ensure trust and effectiveness in these technologies, it is essential to implement clinically validated and unbiased algorithms, while fostering transparency and collaboration among developers, healthcare professionals, and regulators. Therefore, AI applied to telemedicine offers a revolutionary opportunity to improve the accessibility and quality of healthcare in rural areas by promoting more equitable and efficient care.
References
Sekhon H, Sekhon K, Launay C, Afililo M, Innocente N, Vahia I, et al. Telemedicine and the rural dementia population: A systematic review. Maturitas. 2021;143:105-14. https://doi.org/10.1016/j.maturitas.2020.09.001
Zapata Muriel FA, Montoya Zapata S, Montoya-Zapata D. Dilemas éticos planteados por el auge de la inteligencia artificial: una mirada desde el transhumanismo. Región Científica. 2024;3(1):2024225. https://doi.org/10.58763/rc2024225
Mohammadzadeh N, Rezayi S, Saeedi S. Telemedicine for Patient Management in Remote Areas and Underserved Populations. Disaster Medicine and Public Health Preparedness. 2022;17:e167. https://doi.org/10.1017/dmp.2022.76
Muñoz Bonilla HA, Menassa Garrido IS, Rojas Coronado L, Espinosa Rodríguez MA. La innovación en el sector servicios y su relación compleja con la supervivencia empresarial. Región Científica. 2024;3(1):2024214. https://doi.org/10.58763/rc2024214
Roman-Acosta D, Rodríguez-Torres E, Baquedano-Montoya MB, López-Zavala L, Pérez-Gamboa AJ. ChatGPT y su uso para perfeccionar la escritura académica en educandos de posgrado. Praxis Pedagógica. 2024;24(36):53-75. https://revistas.uniminuto.edu/index.php/praxis/article/view/3536
Tiribelli S, Monnot A, Shah S, Arora A, Toong P, Kong S, et al. Ethics Principles for Artificial Intelligence-Based Telemedicine for Public Health. American Journal of Public Health. 2023;113(5):577-584. https://doi.org/10.2105/AJPH.2023.307225
Ramessur R, Raja L, Kilduff CLS, Kang S, Li JPO, Thomas PBM, et al. Impact and Challenges of Integrating Artificial Intelligence and Telemedicine into Clinical Ophthalmology. Asia-Pacific Journal of Ophthalmology. mayo de 2021;10(3):317–27. https://doi.org/10.1097/APO.0000000000000406
Bhaskar S, Bradley S, Sakhamuri S, Moguilner S, Chattu V, Pandya S, et al. Designing Futuristic Telemedicine Using Artificial Intelligence and Robotics in the COVID-19 Era. Frontiers in Public Health. 2020;8. https://doi.org/10.3389/fpubh.2020.556789
Ledesma F, Malave-González BE. Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica. 2022;1(1):202214. https://doi.org/10.58763/rc202214
Seetharam K, Kagiyama N, Sengupta P. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Research and Practice. 2019;6:R41-R52. https://doi.org/10.1530/ERP-18-0081
Kammerer-David MI, Murgas-Téllez B. La innovación tecnológica desde un enfoque de dinámica de sistemas. Región Científica. 2024;3(1):2024217. https://doi.org/10.58763/rc2024217
Silva-Cardoso J, Juanatey J, Comín-Colet J, Sousa J, Cavalheiro A, Moreira E. The Future of Telemedicine in the Management of Heart Failure Patients. Cardiac Failure Review. 2021;7:e11. https://doi.org/10.15420/cfr.2020.32
Shen Y, Chen L, Yue W, Xu H. Digital Technology-Based Telemedicine for the COVID-19 Pandemic. Frontiers in Medicine. 2021;8. https://doi.org/10.3389/fmed.2021.646506
Majidian M, Tejani I, Jarmain T, Kellett L, Moy R. Artificial Intelligence in the Evaluation of Telemedicine Dermatology Patients. Journal of Drugs in Dermatology. 2022;21(2):191-194. https://doi.org/10.36849/jdd.6277
Pradeepa R, Rajalakshmi R, Mohan V. Use of Telemedicine Technologies in Diabetes Prevention and Control in Resource-Constrained Settings: Lessons Learned from Emerging Economies. Diabetes Technology & Therapeutics. 2019;21(S2):S29-S216. https://doi.org/10.1089/dia.2019.0038
Mwita K. Strengths and weaknesses of qualitative research in social science studies. Related Topics in Social Science. 2022;11(6). https://doi.org/10.20525/ijrbs.v11i6.1920
Velásquez Castro LA, Paredes-Águila JA. Revisión sistemática sobre los desafíos que enfrenta el desarrollo e integración de las tecnologías digitales en el contexto escolar chileno, desde la docencia. Región Científica. 2024;3(1):2024226. https://doi.org/10.58763/rc2024226
Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research. noviembre de 2019;104:333–9. https://doi.org/10.1016/j.jbusres.2019.07.039
Casasempere-Satorres A, Vercher-Ferrándiz ML. Bibliographic documentary analysis. Getting the most out of the literature review in qualitative research. New Trends in Qualitative Research. 2020;4:247-57. https://doi.org/10.36367/ntqr.4.2020.247-257
Fisher C. Decoding the Ethics Code: A Practical Guide for Psychologists. 5 ed. 2023.
Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. The role of artificial intelligence in healthcare: a structured literature review. BMC Medical Informatics and Decision Making. 2021;21(125). https://doi.org/10.1186/s12911-021-01488-9
Bhattamisra, S., Banerjee, P., Gupta, P., Mayuren, J., Patra, S., & Candasamy, M. Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data & Cognitive Computing. 2023;7(1):10. https://doi.org/10.3390/bdcc7010010
Shumba, A., Montanaro, T., Sergi, I., Fachechi, L., Vittorio, M., & Patrono, L. Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications. Sensors (Basel, Switzerland). 2022;22(19):7675. https://doi.org/10.3390/s22197675
Zheng, Y., Tang, N., Omar, R., Hu, Z., Duong, T., Wang, J., Wu, W., & Haick, H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Advanced Functional Materials. 2021;31(51):2105482. https://doi.org/10.1002/adfm.202105482
Liu, S., Huang, Y., & Shi, L. Autonomous Mobile Clinics: Empowering Affordable Anywhere, Anytime Healthcare Access. IEEE Engineering Management Review. 2022;50(4):147-154. https://doi.org/10.1109/EMR.2022.3220826
Hwang, D., Hsu, C., Chang, K., Chao, D., Sun, C., Jheng, Y., Yarmishyn, A., Wu, J., Tsai, C., Wang, M., Peng, C., Chien, K., Kao, C., Lin, T., Woung, L., Chen, S., & Chiou, S. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics. 2019;9(1):232-245. https://doi.org/10.7150/thno.28447
Lee, D., & Yoon, S. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. International Journal of Environmental Research and Public Health. 2021;18(1):271. https://doi.org/10.3390/ijerph18010271
Quiroz, J., Laranjo, L., Kocaballi, A., Berkovsky, S., Rezazadegan, D., & Coiera, E. Challenges of developing a digital scribe to reduce clinical documentation burden. NPJ Digital Medicine. 2019;2. https://doi.org/10.1038/s41746-019-0190-1
Fan, Y., Xu, P., Jin, H., Ma, J., & Qin, L. (). Vital Sign Measurement in Telemedicine Rehabilitation Based on Intelligent Wearable Medical Devices. IEEE Access. 2019;7:54819-54823. https://doi.org/10.1109/ACCESS.2019.2913189
Patel, V., Orchanian-Cheff, A., & Wu, R. (). Evaluating the Validity and Utility of Wearable Technology for Continuously Monitoring Patients in a Hospital Setting: Systematic Review. JMIR mHealth and uHealth. 2021;9(8): e17411. https://doi.org/10.2196/17411
Tyler J, Choi S, Tewari M. Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: a new paradigm for clinical medicine. Current Opinion in Systems Biology. 2020;20:17-25. https://doi.org/10.1016/j.coisb.2020.07.001
Ghassemi M, Naumann T, Schulam P, Beam A, Chen I, Ranganath R. Practical guidance on artificial intelligence for health-care data. The Lancet. Digital Health. 2019;1(4):e157-e159. https://doi.org/10.1016/S2589-7500(19)30084-6
El-Rashidy N, El-Sappagh S, Islam S, El-bakry H, Abdelrazek S. Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges. Diagnostics. 2021;11(4):607. https://doi.org/10.3390/diagnostics11040607
Hager A, Lindblad S, Brommels M, Salomonsson S, Wannheden C. Sharing Patient-Controlled Real-World Data Through the Application of the Theory of Commons: Action Research Case Study. Journal of Medical Internet Research. 2021;23(1):e16842. https://doi.org/10.2196/16842
Tapuria A, Porat T, Kalra D, Dsouza G, Sun X, Curcin V. Impact of patient access to their electronic health record: systematic review. Informatics for Health and Social Care. 2021;46(2):194-206. https://doi.org/10.1080/17538157.2021.1879810
Schnell-Inderst P, Neyer S, Hörbst A, Müller G, Siebert U, Ammenwerth E. OP140 Adult Patient Access To Electronic Health Records. International Journal of Technology Assessment in Health Care. 2019;35(S1):32-32. https://doi.org/10.1017/S0266462319001673
Fraser M, Gorely T, O’Malley C, Muggeridge D, Giggins O, Crabtree D. Does Connected Health Technology Improve Health-Related Outcomes in Rural Cardiac Populations? Systematic Review Narrative Synthesis. International Journal of Environmental Research and Public Health. 2022;19(4):2302. https://doi.org/10.3390/ijerph19042302
Tsou C, Robinson S, Boyd J, Jamieson A, Blakeman R, Yeung J, McDonnell J, Waters S, Bosich K, Hendrie D. Effectiveness of Telehealth in Rural and Remote Emergency Departments: Systematic Review. Journal of Medical Internet Research. 2021;23(11). https://doi.org/10.2196/30632
Bentaleb J, Larouche M. Innovative use of artificial intelligence in urogynecology. International Urogynecology Journal. 2020;31:1287-1288. https://doi.org/10.1007/s00192-020-04243-2
Huang J, Hartanti I, Colin M, Pitaloka D. Telemedicine and artificial intelligence to support self-isolation of COVID-19 patients: Recent updates and challenges. Digital Health. 2022;8. https://doi.org/10.1177/20552076221100634
Qiao L, Li R. Influence of Personalized Health Management Model Based on Internet Mode on Self-Management Ability and Life Quality of Patients with Chronic Diseases Undergoing Physical Examination. Computational and Mathematical Methods in Medicine. 2022;2022. https://doi.org/10.1155/2022/4434436
Lewy H, Barkan R, Sela T. Personalized Health Systems—Past, Present, and Future of Research Development and Implementation in Real-Life Environment. Frontiers in Medicine. 2019;6. https://doi.org/10.3389/fmed.2019.00149
Coiera E. The Price of Artificial Intelligence. Yearbook of Medical Informatics. 2019;28(01):14-15. https://doi.org/10.1055/s-0039-1677892
Manickam P, Mariappan S, Murugesan S, Hansda S, Kaushik A, Shinde R, et al. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors. 2022;12(8):562. https://doi.org/10.3390/bios12080562
Daye D, Wiggins W, Lungren M, Alkasab T, Kottler N, Allen B, et al. Implementation of Clinical Artificial Intelligence in Radiology: Who Decides and How? Radiology. 2022;305(3):212151. https://doi.org/10.1148/radiol.212151
Szabó L, Raisi-Estabragh Z, Salih A, Mccracken C, Pujadas E, Gkontra P, et al. Clinician's guide to trustworthy and responsible artificial intelligence in cardiovascular imaging. Frontiers in Cardiovascular Medicine. 2022;9. https://doi.org/10.3389/fcvm.2022.1016032
Trocin C, Mikalef P, Papamitsiou Z, Conboy K. Responsible AI for Digital Health: a Synthesis and a Research Agenda. Information Systems Frontiers. 2021;25:2139-2157. https://doi.org/10.1007/s10796-021-10146-4
He J, Baxter S, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nature Medicine. 2019;25:30-36. https://doi.org/10.1038/s41591-018-0307-0
Ting D, Ang M, Mehta J, Ting D. Artificial intelligence-assisted telemedicine platform for cataract screening and management: a potential model of care for global eye health. British Journal of Ophthalmology. 2019;103(11):1537-1538. https://doi.org/10.1136/bjophthalmol-2019-315025
Salman O, Taha Z, Alsabah M, Hussein Y, Mohammed A, Aal-Nouman M. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Computer Methods and Programs in Biomedicine. 2021;209:106357. https://doi.org/10.1016/j.cmpb.2021.106357
Published
Issue
Section
License
Copyright (c) 2023 Ana María Chavez-Cano (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.