Artificial intelligence in Latin American higher education: implementations, ethical challenges, and pedagogical effectiveness

Authors

DOI:

https://doi.org/10.62486/latia2025304

Keywords:

artificial intelligence, higher education, systematic review, technology adoption, Latin America

Abstract

Artificial intelligence is establishing itself as a catalyst for transformation in the regional university sector, generating growing yet uneven academic output. This research conducted a systematic review following the PRISMA methodology on applications of artificial intelligence in Latin American higher education. The results from the 421 studies obtained during the bibliometric stage indicate that research is geographically and institutionally concentrated in a limited set of approaches and practices. In this regard, a notable prevalence of studies on Machine Learning applications, as well as Natural Language Processing, was observed. From a practical standpoint, 30 studies were selected for qualitative analysis. These texts agreed that the implementation process of these technologies continues to face structural challenges. Notably, poor infrastructure conditions, as well as deficiencies in teacher training, were identified as the main obstacles to implementing these technologies. The analyzed studies also concurred on the inadequate treatment of algorithmic biases or data protection in application policies proposed by the literature. Consequently, a key recommendation of this research is the urgent need for studies aimed at evaluating short-term outcomes, as well as analyzing the long-term sustainability of such innovations.

References

Crompton H, Burke D. Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education. 2023;20:1-22. https://doi.org/10.1186/s41239-023-00392-8 DOI: https://doi.org/10.1186/s41239-023-00392-8

Ivanov S. The dark side of artificial intelligence in higher education. The Service Industries Journal. 2023;43:1055-1082. https://doi.org/10.1080/02642069.2023.2258799 DOI: https://doi.org/10.1080/02642069.2023.2258799

Bates T, Cobo C, Mariño O, Wheeler S. Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education. 2020;17. https://doi.org/10.1186/s41239-020-00218-x DOI: https://doi.org/10.1186/s41239-020-00218-x

Keleş P, Aydın S. University Students’ Perceptions About Artificial Intelligence. Education 3-13. 2021;9:212-220. https://doi.org/10.34293/EDUCATION.V9IS1-MAY.4014 DOI: https://doi.org/10.34293/education.v9iS1-May.4014

Cope B, Kalantzis M, Searsmith D. Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory. 2020;53:1229-1245. https://doi.org/10.1080/00131857.2020.1728732 DOI: https://doi.org/10.1080/00131857.2020.1728732

Crawford J, Allen K, Pani B, Cowling M. When artificial intelligence substitutes humans in higher education: the cost of loneliness, student success, and retention. Studies in Higher Education. 2024;49:883-897. https://doi.org/10.1080/03075079.2024.2326956 DOI: https://doi.org/10.1080/03075079.2024.2326956

AlAjmi A. Artificial Intelligence and Smart Universities. Studies in Computational Intelligence. 2021;935:295-310. https://doi.org/10.1007/978-3-030-62796-6_17 DOI: https://doi.org/10.1007/978-3-030-62796-6_17

Álvarez-álvarez C, Falcón S. Students’ preferences with university teaching practices: analysis of testimonials with artificial intelligence. Educational Technology Research and Development. 2023;71:1709-1724. https://doi.org/10.1007/s11423-023-10239-8 DOI: https://doi.org/10.1007/s11423-023-10239-8

Bracho-Fuenmayor PL. Diálogo de saberes como método disruptivo en enseñanza-aprendizaje y evaluación del derecho a través de la investigación. Revista Pedagogía Universitaria Y Didáctica Del Derecho. 2025;12(1):139-154. https://doi.org/10.5354/0719-5885.2025.75475 DOI: https://doi.org/10.5354/0719-5885.2025.75475

Wang C, Wang H, Li Y, Dai J, Gu X, Yu T. Factors Influencing University Students’ Behavioral Intention to Use Generative Artificial Intelligence: Integrating the Theory of Planned Behavior and AI Literacy. International Journal of Human–Computer Interaction. 2024;41:6649-6671. https://doi.org/10.1080/10447318.2024.2383033 DOI: https://doi.org/10.1080/10447318.2024.2383033

Sarwari A, Javed M, Adnan H, Wahab M. Assessment of the impacts of artificial intelligence (AI) on intercultural communication among postgraduate students in a multicultural university environment. Scientific Reports. 2024;14 (13849). https://doi.org/10.1038/s41598-024-63276-5 DOI: https://doi.org/10.1038/s41598-024-63276-5

Tabuenca B, Uche-Soria M, Greller W, Leo D, Balcells-Falgueras P, Gloor P, et al. Greening smart learning environments with Artificial Intelligence of Things. Internet of Things. 2023;25:101051. https://doi.org/10.1016/j.iot.2023.101051 DOI: https://doi.org/10.1016/j.iot.2023.101051

Triberti S, Fuccio R, Scuotto C, Marsico E, Limone P. “Better than my professor?” How to develop artificial intelligence tools for higher education. Frontiers in Artificial Intelligence. 2024;7, 1329605. https://doi.org/10.3389/frai.2024.1329605 DOI: https://doi.org/10.3389/frai.2024.1329605

Lainjo B, Tsmouche H. Impact of Artificial Intelligence On Higher Learning Institutions. International Journal of Education, Teaching, and Social Sciences. 2023;3(2). https://doi.org/10.47747/ijets.v3i2.1028 DOI: https://doi.org/10.47747/ijets.v3i2.1028

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Journal of Clinical Epidemiology. 2021;134:178-189. https://doi.org/10.1016/j.jclinepi.2021.03.001 DOI: https://doi.org/10.1016/j.jclinepi.2021.02.003

Orduña-Malea E, Costas R. Link-based approach to study scientific software usage: the case of VOSviewer. Scientometrics. 2021;126:8153-8186. https://doi.org/10.1007/s11192-021-04082-y DOI: https://doi.org/10.1007/s11192-021-04082-y

Sanusi I, Martin F, Gonzales J, Mahipal V, Oyelere S, Suhonen J, et al. AI MyData: Fostering Middle School Students’ Engagement with Machine Learning through an Ethics-Infused AI Curriculum. ACM Transactions on Computing Education. 2024;24:1-37. https://doi.org/10.1145/3702242 DOI: https://doi.org/10.1145/3702242

Klimova B, Pikhart M, Kacetl J. Ethical issues of the use of AI-driven mobile apps for education. Frontiers in Public Health. 2023;10, 1118116. https://doi.org/10.3389/fpubh.2022.1118116 DOI: https://doi.org/10.3389/fpubh.2022.1118116

Aljabr F, Al-Ahdal A. Ethical and pedagogical implications of AI in language education: An empirical study at Ha'il University. Acta Psychologica. 2024;251:104605. https://doi.org/10.1016/j.actpsy.2024.104605 DOI: https://doi.org/10.1016/j.actpsy.2024.104605

Ranade N, Saravia M. Teaching AI Ethics in Technical and Professional Communication: A Systematic Review. IEEE Transactions on Professional Communication. 2024;67:422-436. https://doi.org/10.1109/TPC.2024.3458708 DOI: https://doi.org/10.1109/TPC.2024.3458708

Holmes W, Porayska-Pomsta K, Holstein K, Sutherland E, Baker T, Shum S, et al. Ethics of AI in Education: Towards a Community-Wide Framework. International Journal of Artificial Intelligence in Education. 2021;32:504-526. https://doi.org/10.1007/s40593-021-00239-1 DOI: https://doi.org/10.1007/s40593-021-00239-1

Nguyen A, Ngo H, Hong Y, Dang B, Nguyen B. Ethical principles for artificial intelligence in education. Education and Information Technologies. 2022;28:4221-4241. https://doi.org/10.1007/s10639-022-11316-w DOI: https://doi.org/10.1007/s10639-022-11316-w

Weidener L, Fischer M. Teaching AI Ethics in Medical Education: A Scoping Review of Current Literature and Practices. Perspectives on Medical Education. 2023;12:399-410. https://doi.org/10.5334/pme.954 DOI: https://doi.org/10.5334/pme.954

Knowles M. Five Motivating Concerns for AI Ethics Instruction. Proceedings of the Association for Information Science and Technology. 2021;58(1), 472-476. https://doi.org/10.1002/pra2.481 DOI: https://doi.org/10.1002/pra2.481

Huang C, Zhang Z, Mao B, Yao X. An Overview of Artificial Intelligence Ethics. IEEE Transactions on Artificial Intelligence. 2023;4:799-819. https://doi.org/10.1109/TAI.2022.3194503 DOI: https://doi.org/10.1109/TAI.2022.3194503

Weidener L, Fischer M. Proposing a Principle-Based Approach for Teaching AI Ethics in Medical Education. JMIR Medical Education. 2023;10. https://doi.org/10.2196/55368 DOI: https://doi.org/10.2196/preprints.55368

Baker B, Mills K, McDonald P, Wang L. AI, Concepts of Intelligence, and Chatbots: The “Figure of Man,” the Rise of Emotion, and Future Visions of Education. Teachers College Record. 2023;125:60-84. https://doi.org/10.1177/01614681231191291 DOI: https://doi.org/10.1177/01614681231191291

Zohny H, McMillan J, King M. Ethics of generative AI. Journal of Medical Ethics. 2023;49:79-80. https://doi.org/10.1136/jme-2023-108909 DOI: https://doi.org/10.1136/jme-2023-108909

Al-Kfairy M, Mustafa D, Kshetri N, Insiew M, Alfandi O. Ethical Challenges and Solutions of Generative AI: An Interdisciplinary Perspective. Informatics. 2024;11:58. https://doi.org/10.3390/informatics11030058 DOI: https://doi.org/10.3390/informatics11030058

Cantelmi R, Di Gravio G, Patriarca R. Reviewing qualitative research approaches in the context of critical infrastructure resilience. Environment Systems & Decisions. 2021;41:341-376. https://doi.org/10.1007/s10669-020-09795-8 DOI: https://doi.org/10.1007/s10669-020-09795-8

Rehak D. Assessing and strengthening organisational resilience in a critical infrastructure system: Case study of the Slovak Republic. Safety Science. 2020;123:104573. https://doi.org/10.1016/j.ssci.2019.104573 DOI: https://doi.org/10.1016/j.ssci.2019.104573

Chester M, Underwood S, Samaras C. Keeping infrastructure reliable under climate uncertainty. Nature Climate Change. 2020;10:488-490. https://doi.org/10.1038/s41558-020-0741-0 DOI: https://doi.org/10.1038/s41558-020-0741-0

Nirandjan S, Koks E, Ward P, Aerts J. A spatially-explicit harmonized global dataset of critical infrastructure. Scientific Data. 2022;9(150). https://doi.org/10.1038/s41597-022-01218-4 DOI: https://doi.org/10.1038/s41597-022-01218-4

Sonesson T, Johansson J, Cedergren A. Governance and interdependencies of critical infrastructures: Exploring mechanisms for cross-sector resilience. Safety Science. 2021;142:105383. https://doi.org/10.1016/J.SSCI.2021.105383 DOI: https://doi.org/10.1016/j.ssci.2021.105383

Schweikert A, L'Her G, Deinert M. Simple method for identifying interdependencies in service delivery in critical infrastructure networks. Applied Network Science. 2021;6(44). https://doi.org/10.1007/s41109-021-00385-4 DOI: https://doi.org/10.1007/s41109-021-00385-4

Love P, Ika L, Matthews J, Fang W. Curbing Poor-Quality in Large-Scale Transport Infrastructure Projects. IEEE Transactions on Engineering Management. 2020;66(9):1-13. https://doi.org/10.1109/TEM.2020.3031890 DOI: https://doi.org/10.1109/TEM.2020.3031890

Hoff R, Helmrich A, Dirks A, Kim Y, Li R, Chester M. Dynamic criticality for infrastructure prioritization in complex environments. Environmental Research: Infrastructure and Sustainability. 2023;3:015011. https://doi.org/10.1088/2634-4505/acbe15 DOI: https://doi.org/10.1088/2634-4505/acbe15

Sathurshan M, Saja A, Thamboo J, Haraguchi M, Navaratnam S. Resilience of Critical Infrastructure Systems: A Systematic Literature Review of Measurement Frameworks. Infrastructures. 2022;7(5):67. https://doi.org/10.3390/infrastructures7050067 DOI: https://doi.org/10.3390/infrastructures7050067

Purwar D, Flacke J, Guzman E, Sliuzas R. A qualitative analysis of cascading effects of critical infrastructure service failure post torrential floods in formal & informal settlement: the study-case of Medellin city, Colombia. Sustainable and Resilient Infrastructure. 2024;9:496-512. https://doi.org/10.1080/23789689.2024.2340924 DOI: https://doi.org/10.1080/23789689.2024.2340924

Cárdenas‐Mamani Ú, Kahhat R, Magallanes J. Interdependent response of three critical infrastructures in a South American megacity. Environmental Research: Infrastructure and Sustainability. 2022;2:025003. https://doi.org/10.1088/2634-4505/ac6a0a DOI: https://doi.org/10.1088/2634-4505/ac6a0a

Abouhamad M, Zayed T. Fuzzy Preference Programming Framework for Functional assessment of Subway Networks. Algorithms. 2020;13:220. https://doi.org/10.3390/a13090220 DOI: https://doi.org/10.3390/a13090220

Alizadeh H, Sharifi A. Assessing Resilience of Urban Critical Infrastructure Networks: A Case Study of Ahvaz, Iran. Sustainability. 2020;12:3691. https://doi.org/10.3390/su12093691 DOI: https://doi.org/10.3390/su12093691

Agrawal K, Durbha S, Talreja P, Nukavarapu N. Deep Reinforcement Learning Driven Critical Infrastructure Protection During Extreme Events. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium. 2023:2540-2543. https://doi.org/10.1109/IGARSS52108.2023.10282089 DOI: https://doi.org/10.1109/IGARSS52108.2023.10282089

Robson C, Barr S, Ford A, James P. The structure and behaviour of hierarchical infrastructure networks. Applied Network Science. 2021;6:1-25. https://doi.org/10.1007/s41109-021-00404-4 DOI: https://doi.org/10.1007/s41109-021-00404-4

Gao X, Ye Y, Gong S, Chen L, Wang T. Empirical patterns of interdependencies among critical infrastructures in cascading disasters: Evidence from a comprehensive multi-case analysis. International Journal of Disaster Risk Reduction. 2023;103862. https://doi.org/10.1016/j.ijdrr.2023.103862 DOI: https://doi.org/10.1016/j.ijdrr.2023.103862

Karakoc D, Barker K, Zobel C, Almoghathawi Y. Social vulnerability and equity perspectives on interdependent infrastructure network component importance. Sustainable Cities and Society. 2020;57:102072. https://doi.org/10.1016/j.scs.2020.102072 DOI: https://doi.org/10.1016/j.scs.2020.102072

Blokus A, Dziula P. Relations of Imperfect Repairs to Critical Infrastructure Maintenance Costs. Sustainability. 2021;13:4917. https://doi.org/10.3390/SU13094917 DOI: https://doi.org/10.3390/su13094917

Wee X, Herrera M, Hadjidemetriou G, Parlikad K. Simulation and Criticality Assessment of Urban Rail and Interdependent Infrastructure Networks. Transportation Research Record. 2022;2677:1181-1196. https://doi.org/10.1177/03611981221103594 DOI: https://doi.org/10.1177/03611981221103594

Rangrazjeddi A, González A, Barker K. Adaptive algorithm for dependent infrastructure network restoration in an imperfect information sharing environment. PLoS ONE. 2022;17(8): e0270407. https://doi.org/10.1371/journal.pone.0270407 DOI: https://doi.org/10.1371/journal.pone.0270407

Bracho Fuenmayor PL. Teoría de la justicia de John Rawls, desde una perspectiva de la filosofía política. Revista Chilena de Derecho y Ciencia Política. 2021;12(2):109-132. https://doi.org/10.7770/rchdcp-V12N2-art2650 DOI: https://doi.org/10.7770/rchdcp-V12N2-art2650

You D, Xiao J, Wang Y, Yan H, Wu D, Chen Z, et al. Online Learning From Incomplete and Imbalanced Data Streams. IEEE Transactions on Knowledge and Data Engineering. 2023;35:10650-10665. https://doi.org/10.1109/TKDE.2023.3250472 DOI: https://doi.org/10.1109/TKDE.2023.3250472

Wang M, Yang C, Zhao F, Min F, Wang X. Cost-Sensitive Active Learning for Incomplete Data. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2023;53:405-416. https://doi.org/10.1109/TSMC.2022.3182122 DOI: https://doi.org/10.1109/TSMC.2022.3182122

Pleszczyński M. Implementation of the computer tomography parallel algorithms with the incomplete set of data. PeerJ Computer Science. 2021;7:e339. https://doi.org/10.7717/peerj-cs.339 DOI: https://doi.org/10.7717/peerj-cs.339

Zhu C, Chen C, Zhou R, Wei L, Zhang X. A new multi-view learning machine with incomplete data. Pattern Analysis and Applications. 2020;23:1085-1116. https://doi.org/10.1007/s10044-020-00863-y DOI: https://doi.org/10.1007/s10044-020-00863-y

He J, Han X. Efficient Skyline Computation on Massive Incomplete Data. Data Science and Engineering. 2022;7:102-119. https://doi.org/10.1007/s41019-022-00183-7 DOI: https://doi.org/10.1007/s41019-022-00183-7

Gong Y, Li Z, Liu W, Lu X, Liu X, Tsang I, et al. Missingness-Pattern-Adaptive Learning With Incomplete Data. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023;45:11053-11066. https://doi.org/10.1109/TPAMI.2023.3262784 DOI: https://doi.org/10.1109/TPAMI.2023.3262784

Wen J, Zhang Z, Zhang Z, Fei L, Wang M. Generalized Incomplete Multiview Clustering With Flexible Locality Structure Diffusion. IEEE Transactions on Cybernetics. 2020;51:101-114. https://doi.org/10.1109/TCYB.2020.2987164 DOI: https://doi.org/10.1109/TCYB.2020.2987164

Bhagat H, Singh M. A novel algorithm for imputing the missing values in incomplete datasets. Iran Journal of Computer Science. 2023; 7:13-23. https://doi.org/10.1007/s42044-023-00154-9 DOI: https://doi.org/10.1007/s42044-023-00154-9

Miao X, Wu Y, Chen L, Gao Y, Yin J. An Experimental Survey of Missing Data Imputation Algorithms. IEEE Transactions on Knowledge and Data Engineering. 2023;35:6630-6650. https://doi.org/10.1109/TKDE.2022.3186498 DOI: https://doi.org/10.1109/TKDE.2022.3186498

Slota S, Fleischmann K, Greenberg S, Verma N, Cummings B, Li L, et al. Good systems, bad data?: Interpretations of AI hype and failures. Proceedings of the Association for Information Science and Technology. 2020;57(1):e275. https://doi.org/10.1002/pra2.275 DOI: https://doi.org/10.1002/pra2.275

Al-Taezi M, Wang Y, Zhu P, Hu Q, Al-Badwi A. Improved generative adversarial network with deep metric learning for missing data imputation. Neurocomputing. 2023;570:127062. https://doi.org/10.1016/j.neucom.2023.127062 DOI: https://doi.org/10.1016/j.neucom.2023.127062

Jäger S, Allhorn A, Biessmann F. A Benchmark for Data Imputation Methods. Frontiers in Big Data. 2021;4:693674. https://doi.org/10.3389/fdata.2021.693674 DOI: https://doi.org/10.3389/fdata.2021.693674

Downloads

Published

2025-08-13

Issue

Section

Review

How to Cite

1.
González Torres VH, Lucero Baldevenites EV, Ruiz Esparza M de JA, Bracho-Fuenmayor PL, de Lamarque CPC. Artificial intelligence in Latin American higher education: implementations, ethical challenges, and pedagogical effectiveness. LatIA [Internet]. 2025 Aug. 13 [cited 2025 Aug. 25];3:304. Available from: https://latia.ageditor.uy/index.php/latia/article/view/304