English Title: The State of Quantum Computing: Hardware, Algorithms, and Emerging Networks

Authors

DOI:

https://doi.org/10.62486/latia2025316

Keywords:

Quantum Computing, Qubits, Quantum Algorithms, Quantum Hardware, Quantum Internet, Utility-Scale, Post-quantum cryptography (PQC), Shor’s Algorithm, Grover’s Algorithm, superposition, entanglement

Abstract

This review article examines the current landscape and recent advancements in quantum computing, emphasizing its roots in quantum mechanics and its growing influence across various computational fields. A thorough analysis of recent literature, including academic publications and industry white papers, highlights significant progress in qubit technologies, quantum algorithms, and the emerging area of quantum networking. The findings indicate enhanced fabrication of quantum processors with higher qubit counts and improved stability and coherence. Additionally, developments in quantum algorithms suggest the potential for considerable speedups compared to classical methods for specific problems. Research into quantum key distribution and the prospect of a quantum internet points to promising advancements in secure communication. However, challenges surrounding error correction, scalability, and the practical implementation of quantum systems remain critical. 

In conclusion, quantum computing is pivotal, showcasing tangible progress toward solving real-world problems. However, it continues to grapple with substantial hurdles in achieving fully fault-tolerant and scalable systems. Ongoing interdisciplinary research and development efforts are vital to unlocking this technology's transformative potential and addressing its broader societal implications.

References

Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, et al. Probing the limits of quantum advantage on noisy intermediate-scale quantum devices. *Phys. Rev. X*. 2019;9(2):021027.

Mermin ND. Quantum computer science: an introduction. Cambridge University Press; 2007. DOI: https://doi.org/10.1017/CBO9780511813870

Feynman RP. Simulating physics with computers. *Int. J. Theor. Phys*. 1982;21(6-7):467-488. DOI: https://doi.org/10.1007/BF02650179

Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge university press; 2010.

Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. Ieee; 1994. p. 124-134. DOI: https://doi.org/10.1109/SFCS.1994.365700

Metcalf BJ, Humphreys PC, Hinkley NR, Spring JB, Lavoie J, Moore DW, et al. Quantum teleportation on a photonic chip. *Nature Photonics*. 2014;8(10):770-774. DOI: https://doi.org/10.1038/nphoton.2014.217

Barker E, Chen L, Roginsky A, Vassilev A, Yeun C, Yu A. Recommendation for key management: Part 1: General. NIST Special Publication. 2020;800:57. DOI: https://doi.org/10.6028/NIST.SP.800-57pt1r5

Xu F, Curty M, Qi B, Lo HK. Practical quantum key distribution with intensity modulation and wavelength division multiplexing. *New Journal of Physics*. 2010;12(11):113007. DOI: https://doi.org/10.1088/1367-2630/12/10/103042

Wittek P. Quantum machine learning: what quantum computing means to data mining. Academic Press; 2014. DOI: https://doi.org/10.1016/B978-0-12-800953-6.00004-9

Biamonte J, Wittek P, Vendevolde S, Bergholm V. Quantum machine learning. *Nature*. 2017;549(7671):195-202. DOI: https://doi.org/10.1038/nature23474

Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, et al. Superconducting qubits: Current state of play. *Annu. Rev. Condens. Matter Phys*. 2020;11:369-395.

Bharti K, Cervera-Lierta A, Kyriienko T, Menke T, Subramanian S, Izmailov A, et al. Noisy intermediate-scale quantum (NISQ) algorithms. *Rev. Mod. Phys*. 2022;94(1):015004. DOI: https://doi.org/10.1103/RevModPhys.94.015004

Alagic D, Alperin-Sheriff J, Apon D, Cooper M, Dang Q, Kelsey J, et al. Status report on the second round of the NIST post-quantum cryptography standardization process. NISTIR. 2020;8309.

The PKI Consortium. YouTube Channel [Internet]. [place unknown]: YouTube; [cited 2024 May 7]. Available from: [https://www.youtube.com/@PKIConsortium]

Nguyen HT, Lee J, Nguyen BT, Nguyen MT, Trinh K. Granular aluminum Josephson junction arrays for quantum computing. *Sci Rep*. 2023;13(1):15647.

Zhang P, Wang Z, Tan X, Li H, Yang S, Zhao Y, et al. Coherent control of a strongly driven artificial atom with single microwave photons. *Nature Physics*. 2023;19(1):48-53.

Grosso G, Doyle S, Paolucci F, Geremew T, Huber M, Rothlisberger UP, et al. Room-temperature coherent control of defect spin qubits in silicon carbide. *Nat. Photon*. 2018;12(11):706-711.

Gambetta JM, Chow JM, Steffen M. Building a quantum computer using superconducting qubits. *npj Quantum Information*. 2017;3(1):1-7. DOI: https://doi.org/10.1038/s41534-016-0004-0

Preskill J. Quantum computing in the NISQ era and beyond. *Quantum*. 2018;2:79. DOI: https://doi.org/10.22331/q-2018-08-06-79

Krinner S, Lacroix C, Remm A, Di Paolo L, Gen Kim N, Rozhenko M, et al. Realizing repeated quantum error correction in a distance-three surface code. *Nature*. 2022;605(7911):669-675. DOI: https://doi.org/10.1038/s41586-022-04566-8

Awschalom DD, Bassett LC, Dzurak AS, Hu EL, Petta JR. Quantum technologies with defects. *Proc. Natl. Acad. Sci. USA*. 2018;115(38):8513-8521.

Zhou L, Wang S-T, Choi S, Pikovskiy A, Trebst S, Knysh S, et al. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. *Phys. Rev. X*. 2020;10(2):021067. DOI: https://doi.org/10.1103/PhysRevX.10.021067

Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Reiner T, et al. Quantum chemistry in the age of quantum computing. *Chem. Rev*. 2019;119(19):10856-10915. DOI: https://doi.org/10.1021/acs.chemrev.8b00803

Harrow AW, Natarajan A, Montanaro A. Quantum supremacy. *Commun. ACM*. 2020;63(12):82-89. DOI: https://doi.org/10.1145/3429950

Hirsbrunner D, Vettas D, Genkin D, Guler M, Sunar B, Excited rowhammer: Rowhammer strikes the next billion ddr4 devices. 29th USENIX Security Symposium (USENIX Security 20). 2020.

National Institute of Standards and Technology. Post-quantum cryptography [Internet]. 2024 [cited 2025 April 8]. Available from: [insert URL here]

McCutcheon JP, Broughton M, Medina E, Mower B, Gil GS, Del Rio Vera O, et al. PennyLane. *arXiv preprint arXiv:2011.02278*. 2020.

Erven C, Dynes JF, Lucamarini M, Shields AJ, Towards global quantum key distribution. *Nature Photonics*. 2021;15(9):681-692.

Chen J-P, Zhang C, Liu Y, Yu S, Zhang W-J, Chen H, et al. Field test of a metropolitan quantum key distribution network. *Opt. Express*. 2009;17(8):6787-6795.

Dahlberg A, Skrzypczyk D, Coopmans T, Wubben L, Stiller B, de Groot S, et al. A link-layer protocol for quantum key distribution networks. *Proceedings of the 16th international conference on emerging networking experiments and technologies*. 2020: 17-31.

Cisco Systems. Quantum computing and networking: Building secure quantum networks [Internet]. 2024 [cited 2025 Apr 8]. Available from: https://www.ciscolive.com/c/dam/r/ciscolive/global-event/docs/2024/pdf/PSOETI-1402.pdf

Pirandola R, Valeri M, De Sanctis A, Banchi L. End-to-end quantum networking: Foundations and perspectives. *WIREs Quantum Information*. 2021;11(4):e1651.

Pirandola R, Laurenza R, Ottaviani C, Spedalieri FM. Quantum cryptography: From quantum key distribution to quantum network security. *Communications Surveys & Tutorials, IEEE*. 2021;23(1):247-298.

Azuma K, Ueno Y, Yamazaki K, Hayashi M. Quantum key distribution network with trusted relays. *New Journal of Physics*. 2016;18(2):023023. DOI: https://doi.org/10.1088/1367-2630/18/2/023023

IBM. IBM Eagle quantum processor [Internet]. 2021 [cited 2024 May 7]. Available from: [insert URL here]

Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, et al. Superconducting qubits: Current state of play. *Annual Review of Condensed Matter Physics*. 2020;11:369-395.

Baireuther P, Dillinger A, Filipp S, Haeberlen A, Schwenk I, Steudtner M, et al. Towards fault-tolerant quantum computation with trapped ions. *New Journal of Physics*. 2021;23(2):023024.

Valiron B, Gilain C, Nagaj D, Pichler H, Schachenmayer J, Zoller P, Engineering spin models with rydberg atoms. *Physical Review X*. 2021;11(4):041043.

Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M. The security of practical quantum key distribution. *Reviews of Modern Physics*. 2009;81(3):1301.

Lo HK, Curty M, Qi B, Lo HK. Measurement-device-independent quantum key distribution. *Physical Review Letters*. 2012;108(13):130503.

Kimble HJ. The quantum internet. *Nature*. 2008;453(7198):1023-1030.

Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. *Reviews of Modern Physics*. 2002;74(1):145. DOI: https://doi.org/10.1103/RevModPhys.74.145

IBM. IBM Eagle quantum processor [Internet]. 2021 [cited 2024 May 7]. Available from: [https://www.ibm.com/quantum/blog/eagle-quantum-processor-performance]

Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S, et al. Superconducting qubits: Current state of play. *Annual Review of Condensed Matter Physics*. 2020;11:369-395. DOI: https://doi.org/10.1146/annurev-conmatphys-031119-050605

Baireuther P, Dillinger A, Filipp S, Haeberlen A, Schwenk I, Steudtner M, et al. Towards fault-tolerant quantum computation with trapped ions. *New Journal of Physics*. 2021;23(2):023024.

Valiron B, Gilain C, Nagaj D, Pichler H, Schachenmayer J, Zoller P, Engineering spin models with rydberg atoms. *Physical Review X*. 2021;11(4):041043.

Lo HK, Curty M, Qi B, Lo HK. Measurement-device-independent quantum key distribution. *Physical Review Letters*. 2012;108(13):130503. DOI: https://doi.org/10.1103/PhysRevLett.108.130503

Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M. The security of practical quantum key distribution. *Reviews of Modern Physics*. 2009;81(3):1301. DOI: https://doi.org/10.1103/RevModPhys.81.1301

Kimble HJ. The quantum internet. *Nature*. 2008;453(7198):1023-1030. DOI: https://doi.org/10.1038/nature07127

Chen J-P, Zhang C, Liu Y, Yu S, Zhang W-J, Chen H, et al. Field test of a metropolitan quantum key distribution network. *Opt. Express*. 2009;17(8):6787-6795.

Fung C-H, Tamaki K, Qi B, Lo HK, Scarani V. Security proof of quantum key distribution with detection-efficiency mismatch. *Physical Review A*. 2009;79(3):032337.

D'Anvers JP, Bindel NJ, Schwabe P, Pöppelmann T. Hardware implementations of post-quantum cryptography. *Journal of Cryptographic Engineering*. 2018;8(2):111-132.

Bindel NJ, Buchmann JA, Dahmen E, Hülsing A, Lange S, Pöppelmann T, et al. Post-quantum cryptography for long-term security. *Communications of the ACM*. 2017;60(7):95-103.

Thuraisingham B, Gupta A, Saddik U, Hamlen J, Khan L. Quantum cryptography and post-quantum cryptography for enhanced cybersecurity. *Computer*. 2019;52(7):66-75.

Perlner R, Cooper D, Regenscheid A, Hwang YH. Applying post-quantum cryptography to cloud computing. In: Proceedings of the 2016 ACM cloud computing security workshop. 2016. p. 11-22.

Stebila D. Transitioning to post-quantum cryptography. *Journal of Cryptographic Engineering*. 2017;7(3):209-214.

Proietti M, Bevilacqua A, Ruggeri G. A survey on quantum cloud computing: Architectures, challenges, and opportunities. *Journal of Cloud Computing*. 2022;11(1):1-23.

Kumar S, Patel A, Bhatia A, Verma AK, Srivastava P. Hybrid quantum-classical algorithms: A survey. *IETE Technical Review*. 2022;39(6):899-917.

Aggarwal D, Cremers C, Felt A, Pereira O, Vanish R. The price of forgetfulness: The cost of incomplete migration to post-quantum cryptography. In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security. 2018. p. 249-266.

Xu Q, Zhang M, Zhao L, Wang J. Post-quantum cryptography-based authentication and key agreement protocol for wireless sensor networks. *Information Sciences*. 2021;558:170-183.

Kumar S, Patel A, Bhatia A, Verma AK, Srivastava P. Hybrid quantum-classical algorithms: A survey. *IETE Technical Review*. 2022;39(6):899-917.

Stebila D. Transitioning to post-quantum cryptography. *Journal of Cryptographic Engineering*. 2017;7(3):209-214.

Alagic D, Alperin-Sheriff J, Apon D, Cooper M, Dang Q, Kelsey J, et al. Status report on the second round of the NIST post-quantum cryptography standardization process. NISTIR. 2020;8309. DOI: https://doi.org/10.6028/NIST.IR.8240

Chen L, Jordan S, Liu Y-K, Moody D, Peralta R, Smith-Tone D, et al. Report on post-quantum cryptography. NISTIR. 2016;8105. DOI: https://doi.org/10.6028/NIST.IR.8105

Downloads

Published

2025-05-14

Issue

Section

Review

How to Cite

1.
Singh A. English Title: The State of Quantum Computing: Hardware, Algorithms, and Emerging Networks. LatIA [Internet]. 2025 May 14 [cited 2025 Jun. 17];3:316. Available from: https://latia.ageditor.uy/index.php/latia/article/view/316