Systematic Review on the Application of Nanotechnology and Artificial Intelligence in Agricultural Economics

Authors

  • Petros Chavula World Agroforestry Centre, St. Eugene Office Park, Kabulonga, Lusaka, Zambia & Africa Centre of Excellence for Climate-Smart Agriculture and Biodiversity Conservation, Haramaya University, Dire Dawa, Ethiopia Author https://orcid.org/0000-0002-7153-8233
  • Fredrick Kayusi Department of Environmental Studies, Geography & Planning, Maasai Mara University, Narok-Kenya Author https://orcid.org/0000-0003-1481-4016

DOI:

https://doi.org/10.62486/latia2025322

Keywords:

Agricultural Economics, Artificial Intelligence, Nanotechnology, Precision Farming, Smart Agriculture, Sustainability, Systematic Review, Technology Adoption

Abstract

The convergence of nanotechnology and artificial intelligence (AI) represents a transformative force in agricultural economics, offering innovative solutions to longstanding challenges such as productivity inefficiencies, environmental degradation, and unsustainable resource use. This study presents a systematic literature review (SLR) aimed at synthesising theoretical frameworks, applications, and economic implications associated with these technologies in agriculture. A structured search strategy was developed using Boolean operators to combine key terms related to nanotechnology, AI, and machine learning. Comprehensive searches were conducted across six academic databases—Springer, IEEE Xplore, ACM, Science Direct, Wiley, and Google Scholar—complemented by manual and snowballing techniques. From an initial pool of 840 records, 55 studies met the inclusion criteria after rigorous screening and eligibility assessment. Findings indicate that nanotechnology enhances nutrient delivery, pest control, and crop monitoring through nanosensors and nano-fertilisers, while AI facilitates data-driven decision-making, yield prediction, and resource optimisation in precision farming. Despite promising results, challenges such as high initial investment, technological complexity, and limited access for smallholder farmers remain significant. The review concludes that the integration of nanotechnology and AI can improve agricultural efficiency, economic viability, and environmental sustainability. However, targeted investments, capacity-building, and interdisciplinary collaboration are essential to bridge the gap between innovation and implementation in developing economies.

References

Zhang, P., Lynch, I., Handy, R. D., & White, J. C. (2023). A brief history of nanotechnology in agriculture and current status. In Nano-Enabled Sustainable and Precision Agriculture (pp. 3-14). Academic Press. https://doi.org/10.1016/B978-0-323-91233-4.00002-8 DOI: https://doi.org/10.1016/B978-0-323-91233-4.00002-8

Deshmukh, S. K., Kochar, M., Kaur, P., & Singh, P. P. (2023). Nanotechnology in agriculture and environmental science. https://doi.org/10.1201/9781003323945 DOI: https://doi.org/10.1201/9781003323945

Naseer, K. & Cristian, N. P. (2023). Nanotechnology: a tiny solution for the big challenges in agriculture. Int J Res Adv Agric Sci. https://www.researchgate.net/publication/377387612_A_Tiny_Solution_For_The_Big_Challenges_In_Agriculture?enrichId=rgreq-dae353891050463fa9cc5555cda1afec-XXX&enrichSource=Y292ZXJQYWdlOzM3NzM4NzYxMjtBUzoxMTQzMTI4MTIxNzQ4NTcxOUAxNzA1MjIyMjQ0MjQw&el=1_x_2&_esc=publicationCoverPdf

Chowdhury, M., Kushwah, A., Satpute, A. N., Singh, S. K., & Patil, A. K. (2023). A comprehensive review on potential application of nanomaterials in the field of agricultural engineering. Journal of Biosystems Engineering, 48(4), 457-477. https://doi.org/10.1007/s42853-023-00204-x DOI: https://doi.org/10.1007/s42853-023-00204-x

S Mukhopadhyay, S. (2014). Nanotechnology in agriculture: prospects and constraints. https://doi.org/10.2147/NSA.S39409 DOI: https://doi.org/10.2147/NSA.S39409

Sutcliffe, C., Knox, J., & Hess, T. (2021). Managing irrigation under pressure: how supply chain demands and environmental objectives drive imbalance in agricultural resilience to water shortages. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2020.106484 DOI: https://doi.org/10.1016/j.agwat.2020.106484

Tan, C., Tao, J., Yi, L., He, J., & Huang, Q. (2022). Dynamic relationship between agricultural technology progress, agricultural insurance and farmers' income. Agriculture. https://doi.org/10.3390/agriculture12091331 DOI: https://doi.org/10.3390/agriculture12091331

Lei, L., Yang, Q., Yang, L., Shen, T., Wang, R., & Fu, C. (2024). Deep learning implementation of image segmentation in agricultural applications: A comprehensive review. Artificial Intelligence Review, 57(6), 149. https://doi.org/10.1007/s10462-024-10775-6 DOI: https://doi.org/10.1007/s10462-024-10775-6

Kayusi F, Chavula P. Enhancing Urban Green Spaces: AI-Driven Insights for Biodiversity Conservation and Ecosystem Services. LatIA [Internet]. 2025 Feb 19;3:87. Available from: http://dx.doi.org/10.62486/latia202587 DOI: https://doi.org/10.62486/latia202587

Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D. V. N., & Rangasamy, G. (2023). Digitalization of the agro-food sector for achieving sustainable development goals: a review. Sustainable Food Technology, 1(6), 783-802. http://dx.doi.org/10.1039/d3fb00124e DOI: https://doi.org/10.1039/D3FB00124E

Xuetao, S., Tinga, Y. U., & Fawen, Y. (2023). The Impact of Digital Financial Inclusion on Agricultural Mechanization: Evidence from 1,869 Counties in China. China Economic Transition (CET), 6(4). http://dx.doi.org10.3868/s060-016-023-0026-4

Chavula P, Kayusi F, Lungu G, Uwimbabazi A. The Current Landscape of Early Warning Systems and Traditional Approaches to Disaster Detection. LatIA [Internet]. 2025 Mar 3;3:77. Available from: http://dx.doi.org/10.62486/latia202577 DOI: https://doi.org/10.62486/latia202577

Sage, N. (2022). Poverty and inequality: the key challenges for development. In The short guide to international development (pp. 125-146). Policy Press. https://doi.org/10.51952/9781447348856.ch007 DOI: https://doi.org/10.51952/9781447348856.ch007

Guo, Y. & Liu, Y. (2022). Sustainable poverty alleviation and green development in China's underdeveloped areas. Journal of Geographical Sciences. https://doi.org/10.1007/s11442-021-1932-y DOI: https://doi.org/10.1007/s11442-021-1932-y

Surendran, U., Nagakumar, K. C. V., & Samuel, M. P. (2024). Remote sensing in precision agriculture. In Digital agriculture: A solution for sustainable food and nutritional security (pp. 201-223). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-43548-5_7 DOI: https://doi.org/10.1007/978-3-031-43548-5_7

Ihuoma, S. O., Madramootoo, C. A., & Kalacska, M. (2021). Integration of satellite imagery and in situ soil moisture data for estimating irrigation water requirements. International Journal of Applied Earth Observation and Geoinformation, 102, 102396. https://doi.org/10.1016/j.jag.2021.102396 DOI: https://doi.org/10.1016/j.jag.2021.102396

Tarate, S. B., Patel, N. R., Danodia, A., Pokhariyal, S., & Parida, B. R. (2024). Geospatial technology for sustainable agricultural water management in india—a systematic review. Geomatics, 4(2), 91-123. https://doi.org/10.3390/geomatics4020006 DOI: https://doi.org/10.3390/geomatics4020006

Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/jsan13040039 DOI: https://doi.org/10.3390/jsan13040039

Chen, T., Lv, L., Wang, D., Zhang, J., Yang, Y., Zhao, Z., Wang, C., Guo, X., Chen, H., Wang, Q., Xu, Y., Zhang, Q., Du, B., Zhang, L., & Tao, D. (2023). Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey. https://doi.org/10.3390//s22166299

Neranjan Thilakarathne, N., Saifullah Abu Bakar, M., Emerolylariffion Abas, P., & Yassin, H. (2022). A Cloud Enabled Crop Recommendation Platform for Machine Learning-Driven Precision Farming. https://doi.org/10.3390/s22166299 DOI: https://doi.org/10.3390/s22166299

Neog, D. R., Singha, G., Dev, S., & Prince, E. H. (2024). Artificial Intelligence and Its Application in Disaster Risk Reduction in the Agriculture Sector. In Disaster Risk Reduction and Rural Resilience: With a Focus on Agriculture, Water, Gender and Technology (pp. 279-305). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6671-0_15 DOI: https://doi.org/10.1007/978-981-97-6671-0_15

Singh, M., Goswami, S. P., Sachan, P., Sahu, D. K., Beese, S., & Pandey, S. K. (2024). Nanotech for fertilizers and nutrients-improving nutrient use efficiency with nano-enabled fertilizers. J. Exp. Agric. Int, 46(5), 220-247. https://www.sdiarticle5.com/review-history/112825 DOI: https://doi.org/10.9734/jeai/2024/v46i52372

Liu, C., Zhou, H., & Zhou, J. (2021). The Applications of Nanotechnology in Crop Production. https://doi.org/10.3390/molecules26237070 DOI: https://doi.org/10.3390/molecules26237070

Yadav, N., Garg, V. K., Chhillar, A. K., & Rana, J. S. (2023). Recent advances in nanotechnology for the improvement of conventional agricultural systems: A review. Plant Nano Biology. https://doi.org/10.1016/j.plana.2023.100032 DOI: https://doi.org/10.1016/j.plana.2023.100032

Neme, K., Nafady, A., Uddin, S., & Tola, Y. B. (2021). Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e08539 DOI: https://doi.org/10.1016/j.heliyon.2021.e08539

An, C., Sun, C., Li, N., Huang, B., Jiang, J., Shen, Y., ... & Wang, Y. (2022). Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. Journal of Nanobiotechnology, 20(1), 11. https://doi.org/10.1186/s12951-021-01214-7 DOI: https://doi.org/10.1186/s12951-021-01214-7

P. Chavula, H. Mambwe, A. A. Mume, Y. Umer, and W. Chazya, “Impact of Agroforestry Adoption among Smallholder Farmers’ Households in Zambia: An Expenditure Approach,” East African Journal of Forestry and Agroforestry, vol. 6, no. 1, pp. 309–328, Oct. 2023. https://doi.org/10.37284/eajfa.6.1.1474 DOI: https://doi.org/10.37284/eajfa.6.1.1474

Chavula P, Shepande C, Feyissa S, Sileshi M. Factors Influencing Climate-Smart Agriculture Practices Adoption and Crop Productivity among Smallholder Farmers in Nyimba District, Zambia. 2023 Nov 14; Available from: http://dx.doi.org/10.21203/rs.3.rs-3604497/v1 DOI: https://doi.org/10.21203/rs.3.rs-3604497/v1

Shaikh, A., Meroliya, H., Dagade-Gadale, S., & Waghmode, S. (2021). Applications of nanotechnology in precision agriculture: A review. Res. Rev. Biotechnol. Biosci, 8, 105-117. http://doi.org/10.5281/zenodo.5118402

Ali, S. S., Al-Tohamy, R., Koutra, E., Moawad, M. S., Kornaros, M., Mustafa, A. M., ... & Sun, J. (2021). Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of the Total Environment, 792, 148359. https://doi.org/10.1016/j.scitotenv.2021.148359 DOI: https://doi.org/10.1016/j.scitotenv.2021.148359

Kale, S. K., Parishwad, G. V., & Patil, A. S. N. H. A. S. (2021). Emerging agriculture applications of silver nanoparticles. ES Food & Agroforestry. https://dx.doi.org/10.30919/esfaf438 DOI: https://doi.org/10.30919/esfaf438

Singh, H., Sharma, A., Bhardwaj, S. K., Arya, S. K., Bhardwaj, N., & Khatri, M. (2021). Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental Science: Processes & Impacts, 23(2), 213-239. https://dx.doi.org/10.1039/d0em00404a DOI: https://doi.org/10.1039/D0EM00404A

Vijayakumar, M. D., Surendhar, G. J., Natrayan, L., Patil, P. P., Ram, P. B., & Paramasivam, P. (2022). Evolution and recent scenario of nanotechnology in agriculture and food industries. Journal of Nanomaterials, 2022(1), 1280411. https://doi.org/10.1155/2022/1280411 DOI: https://doi.org/10.1155/2022/1280411

Mwewa T, Lungu G, Turyasingura B, Umer Y, Chavula P. Blockchain Technology: A Review Study on Improving Efficiency and Transparency in Agricultural Supply Chains. Jurnal Galaksi [Internet]. 2024 Dec 31;1(3):178–90. Available from: http://dx.doi.org/10.70103/galaksi.v1i3.46 DOI: https://doi.org/10.70103/galaksi.v1i3.46

Ashraf, S. A., Siddiqui, A. J., Abd Elmoneim, O. E., Khan, M. I., Patel, M., Alreshidi, M., ... & Adnan, M. (2021). Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of the Total Environment, 768, 144990. https://doi.org/10.1016/j.scitotenv.2021.144990 DOI: https://doi.org/10.1016/j.scitotenv.2021.144990

Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem. https://doi.org/10.1016/j.aac.2022.10.001 DOI: https://doi.org/10.1016/j.aac.2022.10.001

Chavula P, Shepande C, Feyissa S. Comparative Analysis of Effects of Climate-Smart Agricultural Practices and Conventional Agriculture on Soil Physicochemical Properties in Nyimba District, Zambia. African Journal of Climate Change and Resource Sustainability [Internet]. 2023 Jul 8;2(1):117–32. Available from: http://dx.doi.org/10.37284/ajccrs.2.1.1300 DOI: https://doi.org/10.37284/ajccrs.2.1.1300

Adewusi, A. O., Asuzu, O. F., Olorunsogo, T., Iwuanyanwu, C., Adaga, E., & Daraojimba, D. O. (2024). AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 21(1), 2276-2285. https://doi.org/10.30574/wjarr.2024.21.1.0314 DOI: https://doi.org/10.30574/wjarr.2024.21.1.0314

Akintuyi, O. B. (2024). Adaptive AI in precision agriculture: a review: investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Research Journal of Multidisciplinary Studies, 7(02), 016-030. https://doi.org/10.53022/oarjms.2024.7.2.0023 DOI: https://doi.org/10.53022/oarjms.2024.7.2.0023

Yousaf, A., Kayvanfar, V., Mazzoni, A., & Elomri, A. (2023). Artificial intelligence-based decision support systems in smart agriculture: Bibliometric analysis for operational insights and future directions. Frontiers in Sustainable Food Systems, 6, 1053921. https://doi.org/10.3389/fsufs.2022.1053921 DOI: https://doi.org/10.3389/fsufs.2022.1053921

Liu, Y., Ji, D., Zhang, L., An, J., & Sun, W. (2021). Rural financial development impacts on agricultural technology innovation: evidence from China. International Journal of Environmental Research and Public Health, 18(3), 1110. https://doi.org/10.3390/ijerph18031110 DOI: https://doi.org/10.3390/ijerph18031110

Wang, Q., Yang, L., & Yue, Z. (). Research on development of digital finance in improving efficiency of tourism resource allocation. Resources. https://doi.org/10.1016/j.resenv.2022.100054 DOI: https://doi.org/10.1016/j.resenv.2022.100054

Zhang, F., Wang, F., Hao, R., & Wu, L. (2022). Agricultural science and technology innovation, spatial spillover and agricultural green development—taking 30 provinces in China as the research object. Applied Sciences. https://doi.org/10.3390/app12020845 DOI: https://doi.org/10.3390/app12020845

Gao, Q., Cheng, C., Sun, G., & Li, J. (2022). The impact of digital inclusive finance on agricultural green total factor productivity: Evidence from China. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2022.905644 DOI: https://doi.org/10.3389/fevo.2022.905644

Hosseinzadeh, M., Samadi Foroushani, M., & Sadraei, R. (2022). Dynamic performance development of entrepreneurial ecosystem in the agricultural sector. British Food Journal, 124(7), 2361-2395. https://doi.org/10.1108/BFJ-08-2021-0909 DOI: https://doi.org/10.1108/BFJ-08-2021-0909

Hrvat, F., Aleta, A., Džuho, A., Hasanić, O., & Spahić Bećirović, L. (2021, April). Artificial intelligence in nanotechnology: recent trends, challenges and future perspectives. In International Conference on Medical and Biological Engineering (pp. 690-702). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-73909-6_79 DOI: https://doi.org/10.1007/978-3-030-73909-6_79

Ghaffar Nia, N., Kaplanoglu, E., & Nasab, A. (2023). Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence. https://doi.org/10.1007/s44163-023-00049-5 DOI: https://doi.org/10.1007/s44163-023-00049-5

Haque, Y., Zawad, R. S., Rony, C. S. A., Al Banna, H., Ghosh, T., Kaiser, M. S., & Mahmud, M. (2024). State-of-the-art of stress prediction from heart rate variability using artificial intelligence. Cognitive Computation, 16(2), 455-481. https://doi.org/10.1007/s12559-023-10200-0 . DOI: https://doi.org/10.1007/s12559-023-10200-0

Downloads

Published

2025-05-07

Issue

Section

Review

How to Cite

1.
Chavula P, Kayusi F. Systematic Review on the Application of Nanotechnology and Artificial Intelligence in Agricultural Economics. LatIA [Internet]. 2025 May 7 [cited 2025 Jun. 17];3:322. Available from: https://latia.ageditor.uy/index.php/latia/article/view/322