Application of Artificial Intelligence in Tree Care in Sub-Saharan Africa
DOI:
https://doi.org/10.62486/latia2025325Keywords:
Artificial intelligence, tree care, Sub-Saharan Africa, remote sensing, machine learning, environmental conservationAbstract
Artificial intelligence (AI) has emerged as a transformative tool in various industries, including environmental conservation and tree care. In Sub-Saharan Africa, where deforestation, climate change, and inadequate tree management pose significant challenges, AI presents opportunities for improving tree care practices. This study explores the application of AI technologies in tree monitoring, disease detection, and sustainable management strategies within the region. Utilizing a combination of literature review and case study analysis, the research evaluates AI-driven approaches such as remote sensing, machine learning models, and automated data collection for assessing tree care and forest dynamicos. The findings indicate that AI enhances early disease detection, optimizes resource allocation, and supports decision-making for conservation efforts. However, challenges such as limited technological infrastructure, high implementation costs, and the need for specialized expertise hinder widespread adoption. The study concludes that while AI holds significant potential for revolutionizing tree care in Sub-Saharan Africa, strategic investments in digital infrastructure, policy support, and capacity building are essential for its successful integration into forestry and environmental management practices.
References
Muthee, K., Duguma, L., Majale, C., Mucheru-Muna, M., Wainaina, P., & Minang, P. (2022). A quantitative appraisal of selected agroforestry studies in Sub-Saharan Africa. Heliyon, 8(9). 10.1016/j.heliyon.2022.e10670 DOI: https://doi.org/10.1016/j.heliyon.2022.e10670
Nakalembe, C. & Kerner, H. (2023). Considerations for AI-EO for agriculture in Sub-Saharan Africa. https://doi.org/10.1088/1748-9326/acc476 DOI: https://doi.org/10.1088/1748-9326/acc476
Daï, E. H., Houndonougbo, J. S. H., Idohou, R., Assogbadjo, A. E., & Kakaï, R. G. (2022). Current knowledge and prospects on the declining Uvaria chamae P. Beauv. in sub-Saharan Africa: a global systematic review for its sustainable management. South African Journal of Botany, 151, 74-84. https://doi.org/10.1016/j.sajb.2022.09.040 DOI: https://doi.org/10.1016/j.sajb.2022.09.040
Gwagwa, A., Kazim, E., Kachidza, P., Hilliard, A., Siminyu, K., Smith, M., & Shawe-Taylor, J. (2021). Road map for research on responsible artificial intelligence for development (AI4D) in African countries: The case study of agriculture. 10.1016/j.patter.2021.100381 DOI: https://doi.org/10.1016/j.patter.2021.100381
Mohan, M., Richardson, G., Gopan, G., Aghai, M. M., Bajaj, S., Galgamuwa, G. P., ... & Cardil, A. (2021). UAV-supported forest regeneration: Current trends, challenges and implications. Remote Sensing, 13(13), 2596. https://doi.org/10.3390/rs13132596 DOI: https://doi.org/10.3390/rs13132596
Ali, G., Mijwil, M. M., Adamopoulos, I., & Ayad, J. (2025). Leveraging the Internet of Things, Remote Sensing, and Artificial Intelligence for Sustainable Forest Management. Babylonian Journal of Internet of Things, 2025, 1-65. https://orcid.org/0000-0003-3234-6420 DOI: https://doi.org/10.58496/BJIoT/2025/001
Shivaprakash, K. N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., ... & Kiesecker, J. M. (2022). Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability, 14(12), 7154. https://doi.org/10.3390/su14127154 DOI: https://doi.org/10.3390/su14127154
Oyedele, V., Daim, T. U., & Herstatt, C. (2023). Technology Roadmapping: Cooling and Heating in Sub-Saharan Africa. In Next Generation Roadmapping: Establishing Technology and Innovation Pathways Towards Sustainable Value (pp. 127-179). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-38575-9_7 DOI: https://doi.org/10.1007/978-3-031-38575-9_7
Aluko, O. A., Odewale, A. T., Taiwo, K., & Adefeso, H. (2024). Unlocking inclusive growth and sustainable development in Nigeria: A roadmap through challenges and opportunities. African Journal of Applied Research, 10(1), 201-223. http://doi.org/10.26437/ajar.30.06.2024.13 DOI: https://doi.org/10.26437/ajar.v10i1.683
Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from …. Sustainability. https://doi.org/10.3390/su13115788 DOI: https://doi.org/10.3390/su13115788
Gwagwa, A., Kachidza, P., Siminyu, K., & Smith, M. (2021). Responsible artificial intelligence in Sub-Saharan Africa: landscape and general state of play. https://journals.co.za/doi/abs/10.23962/10539/30361
Gwagwa, A., Kazim, E., Kachidza, P., Hilliard, A., Siminyu, K., Smith, M., & Shawe-Taylor, J. (2021). Road map for research on responsible artificial intelligence for development (AI4D) in African countries: The case study of agriculture. Patterns, 2(12). https://doi.org/10.1016/j.patter.2021.100381 DOI: https://doi.org/10.1016/j.patter.2021.100381
Antwi, W. K., Akudjedu, T. N., & Botwe, B. O. (2021). Artificial intelligence in medical imaging practice in Africa: a qualitative content analysis study of radiographers' perspectives. Insights into imaging. https://doi.org/10.1186/s13244-021-01028-z DOI: https://doi.org/10.1186/s13244-021-01028-z
Barasa, P. M., Botai, C. M., Botai, J. O., & Mabhaudhi, T. (2021). A review of climate-smart agriculture research and applications in Africa. Agronomy. https://doi.org/10.3390/agronomy11061255 DOI: https://doi.org/10.3390/agronomy11061255
Leal Filho, W., Wall, T., Mucova, S. A. R., Nagy, G. J., Balogun, A. L., Luetz, J. M., ... & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662. http://researchonline.ljmu.ac.uk/id/eprint/16667/ DOI: https://doi.org/10.1016/j.techfore.2022.121662
Gaffley, M., Adams, R., & Shyllon, O. (2022). Artificial intelligence. African insight: A research summary of the ethical and human rights implications of AI in Africa. HSRC & Meta AI and Ethics Human Rights Research Project for Africa–Synthesis Report. Artificial-Intelligence-African-Insight-Report.pdf
Muldoon, J., Cant, C., Graham, M., & Ustek Spilda, F. (2023). The poverty of ethical AI: impact sourcing and AI supply chains. AI & society. https://doi.org/10.1007/s00146-023-01824-9 DOI: https://doi.org/10.1007/s00146-023-01824-9
Okengwu, U. A., Onyejegbu, L. N., Oghenekaro, L. U., Musa, M. O., & Ugbari, A. O. (2023). Environmental and ethical negative implications of AI in agriculture and proposed mitigation measures. Scientia Africana, 22(1), 141-150. https://dx.doi.org/10.4314/sa.v22i1.13 DOI: https://doi.org/10.4314/sa.v22i1.13
Malley, G. S., Wanyama, D., Gorenflo, L. J., & Miller, D. A. (2023). Land use change analysis and modeling of its future trajectories in Morogoro Region, Tanzania: Implication for conservation. Applied Geography. https://doi.org/10.1016/j.apgeog.2023.103081 DOI: https://doi.org/10.1016/j.apgeog.2023.103081
Namatsheve, T., Martinsen, V., Obia, A., & Mulder, J. (2024). Grain yield and nitrogen cycling under conservation agriculture and biochar amendment in agroecosystems of sub-Saharan Africa. A meta-analysis. Agriculture, Ecosystems & Environment, 376, 109243. https://doi.org/10.1016/j.agee.2024.109243 DOI: https://doi.org/10.1016/j.agee.2024.109243
Musah, M., Gyamfi, B. A., Onifade, S. T., & Sackey, F. G. (2025, February). Assessing the roles of green innovations and renewables in environmental sustainability of resource‐rich Sub‐Saharan African states: A financial development perspective. In Natural Resources Forum (Vol. 49, No. 1, pp. 461-490). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1111/1477-8947.12402 DOI: https://doi.org/10.1111/1477-8947.12402
Elmannai, H., El-Rashidy, N., Mashal, I., Alohali, M. A., Farag, S., El-Sappagh, S., & Saleh, H. (2023). Polycystic ovary syndrome detection machine learning model based on optimized feature selection and explainable artificial intelligence. Diagnostics, 13(8), 1506. https://doi.org/10.3390/ diagnostics13081506 DOI: https://doi.org/10.3390/diagnostics13081506
Raum, S., Collins, C. M., Urquhart, J., Potter, C., Pauleit, S., & Egerer, M. (2023). Tree insect pests and pathogens: a global systematic review of their impacts in urban areas. Urban Ecosystems, 26(2), 587-604. https://doi.org/10.1007/s11252-022-01317-5 DOI: https://doi.org/10.1007/s11252-022-01317-5
Panzavolta, T., Bracalini, M., Benigno, A., & Moricca, S. (2021). Alien invasive pathogens and pests harming trees, forests, and plantations: Pathways, global consequences and management. Forests. https://doi.org/10.3390/f12101364Adeniyi, D. O. & Asogwa, E. U. (2023). Dynamics of diseases and insect pests of cashew tree. Forest Microbiology. https://doi.org/10.1016/B978-0-443-18694-3.00019-5 DOI: https://doi.org/10.1016/B978-0-443-18694-3.00019-5
Balla, A., Silini, A., Cherif-Silini, H., Chenari Bouket, A., Moser, W. K., Nowakowska, J. A., ... & Belbahri, L. (2021). The threat of pests and pathogens and the potential for biological control in forest ecosystems. Forests, 12(11), 1579. https://doi.org/10.3390/f12111579 DOI: https://doi.org/10.3390/f12111579
Okigbo, R. C., & Anuagasi, C. (2021). Diseases affecting mushrooms in Africa. Journal of Food Technology and Nutrition Science, 129, 2-10. Diseases-Affecting-Mushrooms-in-Africa.pdf
Kalleshwaraswamy, C. M., Shanbhag, R. R., & Sundararaj, R. (2022). Wood degradation by termites: Ecology, economics and protection. In Science of Wood Degradation and its Protection (pp. 147-170). Singapore: Springer Singaporehttps://www.researchgate.net/publication/359269723_Invasion_of_Wood_Degraders_Through_Wood_Import_and_Need_to_Strengthen_the_Plant_Quarantine_Measures_in_India?enrichId=rgreq-6000ea844f187a472eeaae8814615235-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI2OTcyMztBUzoxMTM5NTU0MjM3MDY3MjY2QDE2NDg3MDIzMTA1MTk%3D&el=1_x_2&_esc=publicationCoverPdf
Haefner, N., Parida, V., Gassmann, O., & Wincent, J. (2023). Implementing and scaling artificial intelligence: A review, framework, and research agenda. Technological Forecasting and Social Change, 197, 122878. https://doi.org/10.1016/j.techfore.2023.122878 DOI: https://doi.org/10.1016/j.techfore.2023.122878
Uwagaba, J., Omotosho, T. D., & George, G. O. (2023). Exploring the barriers to artificial intelligence adoption in Sub-Saharan Africa’s Small and Medium Enterprises and the potential for increased productivity. World Wide Journal of Multidisciplinary Research and Development.
Mutambara, A. G. O. (2025). Artificial Intelligence: A Driver of Inclusive Development and Shared Prosperity for the Global South. DOI: https://doi.org/10.1201/9781003511014-4
Oladipo, E. K., Adeyemo, S. F., Oluwasanya, G. J., Oyinloye, O. R., Oyeyiola, O. H., Akinrinmade, I. D., ... & Nnaji, N. D. (2024). Impact and challenges of artificial intelligence integration in the African health sector: a review. Trends Med Res, 19(1), 220-235. https://doi.org/10.3923/tmr.2024.220.235 DOI: https://doi.org/10.3923/tmr.2024.220.235
Batani, J. & Maharaj, M. S. (2022). Towards data-driven models for diverging emerging technologies for maternal, neonatal and child health services in Sub-Saharan Africa: a systematic review. Global Health Journal. https://doi.org/10.1016/j.glohj.2022.11.003 DOI: https://doi.org/10.1016/j.glohj.2022.11.003
Silvestro, D., Goria, S., Sterner, T., & Antonelli, A. (2022). Improving biodiversity protection through artificial intelligence. Nature sustainability. https://doi.org/10.1038/s41893-022-00851-6 DOI: https://doi.org/10.1101/2021.04.13.439752
Mollura, M., Lehman, L. W. H., Mark, R. G., & Barbieri, R. (2021). A novel artificial intelligence based intensive care unit monitoring system: using physiological waveforms to identify sepsis. Philosophical Transactions of the Royal Society A, 379(2212), 20200252. https://doi.org/10.1098/rsta.2020.0252 DOI: https://doi.org/10.1098/rsta.2020.0252
Chemello, G., Salvatori, B., Morettini, M., & Tura, A. (2022). Artificial intelligence methodologies applied to technologies for screening, diagnosis and care of the diabetic foot: a narrative review. Biosensors. https://doi.org/10.3390/f12111579 DOI: https://doi.org/10.3390/bios12110985
Cilli, R., Elia, M., D’Este, M., Giannico, V., Amoroso, N., Lombardi, A., ... & Lafortezza, R. (2022). Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe. Scientific reports, 12(1), Ryan, M. (2023). The social and ethical impacts of artificial intelligence in agriculture: mapping the agricultural AI literature. Ai & Society. https://doi.org/10.1007/s00146-021-01377-9 DOI: https://doi.org/10.1038/s41598-022-20347-9
Elbasi, E., Mostafa, N., AlArnaout, Z., Zreikat, A. I., Cina, E., Varghese, G., ... & Zaki, C. (2022). Artificial intelligence technology in the agricultural sector: A systematic literature review. IEEE access, 11, 171-202. https://doi.org/10.1109/ACCESS.2022.3232485 DOI: https://doi.org/10.1109/ACCESS.2022.3232485
Bhat, S. A. & Huang, N. F. (2021). Big data and ai revolution in precision agriculture: Survey and challenges. Ieee Access. https://doi.org/10.1109/ACCESS.2021.3102227 DOI: https://doi.org/10.1109/ACCESS.2021.3102227
Ganeshkumar, C., Jena, S. K., Sivakumar, A., & Nambirajan, T. (2023). Artificial intelligence in agricultural value chain: review and future directions. Journal of Agribusiness in Developing and Emerging Economies, 13(3), 379-398. https://doi.org/10.1108/JADEE-07-2020-0140 DOI: https://doi.org/10.1108/JADEE-07-2020-0140
Subeesh, A. & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture. https://doi.org/10.1016/j.aiia.2021.11.004 DOI: https://doi.org/10.1016/j.aiia.2021.11.004
Carayannis, E. G., Christodoulou, K., Christodoulou, P., Chatzichristofis, S. A., & Zinonos, Z. (2021). Known unknowns in an era of technological and viral disruptions—implications for theory, policy, and practice. Journal of the knowledge economy, 1-24. https://doi.org/10.1007/s13132-020-00719-0 DOI: https://doi.org/10.1007/s13132-020-00719-0
Liu, F., Liu, G., Wang, X., & Feng, Y. (2024). Whether the construction of digital government alleviate resource curse? Empirical evidence from Chinese cities. Resources Policy. https://doi.org/10.1016/j.resourpol.2024.104811 DOI: https://doi.org/10.1016/j.resourpol.2024.104811
Published
Issue
Section
License
Copyright (c) 2025 Petros Chavula, Fredrick Kayusi, Bismark Agura Kayus (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.