AI Application in Climate-Smart Agricultural Technologies: A Synthesis Study

Authors

  • Petros Chavula World Agroforestry Centre, St Eugene Office Park 39P Lake Road, P.O. Box 50977, Kabulonga, Lusaka, Zambia & African Centre of Excellence for Climate-Smart Agriculture and Biodiversity Conservation, Haramaya University, Dire-Dawa, Ethiopia Author https://orcid.org/0000-0002-7153-8233
  • Fredrick Kayusi Department of Environmental Sciences, School of Environmental and Earth Sciences, Pwani University, Kilifi, Kenya & Department of Environmental Studies, Geography and Planning, Maasai Mara University, Narok, Kenya Author https://orcid.org/0000-0003-1481-4016
  • Gilbert Lungu School of Natural Resources Management, Copperbelt University, P.O. Box 21692, Kitwe, Zambia Author https://orcid.org/0009-0008-7767-6371
  • Hockings Mambwe World Agroforestry Centre, St Eugene Office Park 39P Lake Road, P.O. Box 50977, Kabulonga, Lusaka, Zambia Author https://orcid.org/0009-0009-2826-807X
  • Agnes Uwimbabazi Department of Nature Conservation Rwanda Polytechnic-Integrated Polytechnic Regional College of Kitabi, Rwanda, P.O. Box 330 Huye Rwanda & School of Natural Resources Management, Copperbelt University, P.O. Box 21692, Kitwe, Zambia Author https://orcid.org/0009-0001-3415-0192

DOI:

https://doi.org/10.62486/latia2025330

Keywords:

Climate-smart agriculture, Artificial intelligence, Machine learning, Precision farming, Greenhouse gas emissions, Sustainability, Climate resilience, Digital agriculture, Food security

Abstract

Climate change poses significant challenges to global agriculture, necessitating innovative solutions to enhance sustainability and productivity. Artificial intelligence (AI) has emerged as a key enabler in climate-smart agricultural technologies (CSAT), offering data-driven approaches to optimize resource use, mitigate climate risks, and improve decision-making. This study aims to evaluate AI's integration into CSAT, focusing on its applications, benefits, and adoption challenges, particularly in climate-vulnerable regions. A bibliographic review employing machine learning (ML) and natural language processing (NLP) techniques was conducted to analyze over 40,000 scientific articles from global academic databases. Topic modeling and classification algorithms were applied to identify key trends, adoption barriers, and implementation pathways for AI-driven CSAT. The study also incorporated expert validation through the Delphi method to refine AI-generated insights and ensure their alignment with real-world agricultural challenges. Findings indicate that AI enhances decision-making in conservation agriculture, precision farming, water management, and market intelligence. AI-powered tools facilitate early pest detection, optimize irrigation schedules, and provide real-time climate advisory services, significantly improving agricultural resilience and food security. However, major barriers to AI adoption include high implementation costs, limited digital literacy, and inadequate infrastructure, particularly in low-income regions. Despite these challenges, AI-driven CSAT presents significant potential to transform agriculture, especially in climate-affected areas. Strategic investments in digital literacy, infrastructure development, and supportive policy frameworks are essential to facilitate AI adoption. Strengthening interdisciplinary collaboration among researchers, policymakers, and farmers will be crucial in advancing sustainable agricultural practices and ensuring long-term food security.

References

Waaswa A, Oywaya Nkurumwa A, Mwangi Kibe A, Ngeno Kipkemoi J. Climate-Smart agriculture and potato production in Kenya: review of the determinants of practice. Clim Dev. 2022;14(1):75–90. https://doi.org/10.1080/17565529.2021.1885336 DOI: https://doi.org/10.1080/17565529.2021.1885336

Tyagi A, Haritash AK. Climate-smart agriculture, enhanced agroproduction, and carbon sequestration potential of agroecosystems in India: A meta-analysis. J Environ Stud Sci. 2024;1–19. https://doi.org/10.1007/s13412-024-00917-1 DOI: https://doi.org/10.1007/s13412-024-00917-1

Adimassu Z, Tibebe D, Tamene L, Abera W. Evaluating the Effects of Climate Smart Agricultural (CSA) Practices on Productivity, Adaptation, and Mitigation Indicators in Ethiopia: A Meta-analysis Approach. Heliyon. https://doi.org/10.1016/j.heliyon.2025.e42796 DOI: https://doi.org/10.1016/j.heliyon.2025.e42796

Chavula P, Lungu G, Turyasingura B, Abdi E, Mwewa T, Abrahim A. Promoting a Human-Rights-Centered Just Energy Transition for Communities in Zambia ’ s Mineral Resource Areas : A Critical Review of Policies , Challenges , and Pathways. 2025;7(1):169–83. https://doi.org/10.56557/abaarj/2025/v7i1164 DOI: https://doi.org/10.56557/abaarj/2025/v7i1164

Kayusi F. AI-Powered Satellite Imagery Processing for Global Air Traffic Surveillance Procesamiento de Imágenes Satelitales Impulsado por IA para la Vigilancia Global del Tráfico Aéreo. 2025;(Ml). https://doi.org/10.62486/latia202580 DOI: https://doi.org/10.62486/latia202580

Sharma P, Sharma P, Thakur N. Sustainable farming practices and soil health: A pathway to achieving SDGs and future prospects. Discov Sustain. 2024;5(1):250. https://doi.org/10.1007/s43621-024-00447-4 DOI: https://doi.org/10.1007/s43621-024-00447-4

Gupta D, Gujre N, Singha S, Mitra S. Role of existing and emerging technologies in advancing climate-smart agriculture through modeling: A review. Ecol Inform. 2022;71:101805. https://doi.org/10.1016/j.ecoinf.2022.101805 DOI: https://doi.org/10.1016/j.ecoinf.2022.101805

Jariwala H, Santos RM, Lauzon JD, Dutta A, Wai Chiang Y. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. Environ Sci Pollut Res. 2022;29(36):53967–95. https://doi.org/10.1007/s11356-022-20890-y DOI: https://doi.org/10.1007/s11356-022-20890-y

Adesipo A, Fadeyi O, Kuca K, Krejcar O, Maresova P, Selamat A, et al. Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors. 2020;20(21):5977. https://doi.org/10.3390/s20215977 DOI: https://doi.org/10.3390/s20215977

Hu C, Wang X, Li J, Luo L, Liu F, Wu W, et al. Climate Smart Agriculture. https://doi.org/10.1016/j.csag.2024.100026 DOI: https://doi.org/10.1016/j.csag.2024.100026

Wally D. Exploring the application of ICTs and big data analytics on climate data in climate-smart agriculture to increase productivity for small-scale farmers: The case of Ghana. Publ master thesis Fac Cult Soc Sci Paris, Lodron Univ Salzbg Tech Fac IT Des Aalborg Univ Copenhagen. 2021. https://doi.org/10.56669/zvps3203 DOI: https://doi.org/10.56669/ZVPS3203

Totin E, Segnon AC, Schut M, Affognon H, Zougmoré RB, Rosenstock T, et al. Institutional perspectives of climate-smart agriculture: A systematic literature review. Sustainability. 2018;10(6):1990. https://doi.org/10.3390/su10061990 DOI: https://doi.org/10.3390/su10061990

Steenwerth KL, Hodson AK, Bloom AJ, Carter MR, Cattaneo A, Chartres CJ, et al. Climate-smart agriculture global research agenda: scientific basis for action. Agric Food Secur. 2014;3:1–39. https://doi.org/10.1186/2048-7010-3-11 DOI: https://doi.org/10.1186/2048-7010-3-11

Gemtou M, Kakkavou K, Anastasiou E, Fountas S, Pedersen SM, Isakhanyan G, et al. Farmers’ transition to climate-smart agriculture: A systematic review of the decision-making factors affecting adoption. Sustainability. 2024;16(7):2828. https://doi.org/10.3390/su16072828 DOI: https://doi.org/10.3390/su16072828

Lee C-L, Orton G, Lu P. Global Meta-Analysis of Innovation Attributes Influencing Climate-Smart Agriculture Adoption for Sustainable Development. Climate. 2024;12(11):192. https://doi.org/10.3390/cli12110192 DOI: https://doi.org/10.3390/cli12110192

Barasa PM, Botai CM, Botai JO, Mabhaudhi T. A review of climate-smart agriculture research and applications in Africa. Agronomy. 2021;11(6):1255. https://doi.org/10.3390/agronomy11061255 DOI: https://doi.org/10.3390/agronomy11061255

Erekalo KT, Pedersen SM, Christensen T, Denver S, Gemtou M, Fountas S, et al. Review on the contribution of farming practices and technologies towards climate-smart agricultural outcomes in a European context. Smart Agric Technol. 2024;7:100413. https://doi.org/10.1016/j.atech.2024.100413 DOI: https://doi.org/10.1016/j.atech.2024.100413

Rosenstock TS, Lamanna C, Chesterman S, Bell P, Arslan A, Richards M, et al. The scientific basis of climate-smart agriculture: a systematic review protocol. 2016. https://doi.org/10.1007/978-3-319-92798-5_12 DOI: https://doi.org/10.1007/978-3-319-92798-5_12

Branca G, McCarthy N, Lipper L, Jolejole MC. Climate-smart agriculture: a synthesis of empirical evidence of food security and mitigation benefits from improved cropland management. 2011. https://doi.org/10.1201/9781003246237-12 DOI: https://doi.org/10.1201/9781003246237-12

Sathianarayanan M, Kirdemir U, Gianoli A. Urban intelligence: Navigating climate challenges with ai. In: Nexus of AI, Climatology, and Urbanism for Smart Cities. IGI Global Scientific Publishing; 2025. p. 59–90. https://doi.org/10.4018/979-8-3693-5918-1.ch003 DOI: https://doi.org/10.4018/979-8-3693-5918-1.ch003

Prajapati CS, Priya NK, Bishnoi S, Vishwakarma SK, Buvaneswari K, Shastri S, et al. The Role of Participatory Approaches in Modern Agricultural Extension: Bridging Knowledge Gaps for Sustainable Farming Practices. https://doi.org/10.9734/jeai/2025/v47i23281 DOI: https://doi.org/10.9734/jeai/2025/v47i23281

Jillahi KB, Iorliam A. A Scoping Literature Review of Artificial Intelligence in Epidemiology: Uses, Applications, Challenges and Future Trends. J Comput Theor Appl. 2024;2(2):204–28. https://doi.org/10.62411/jcta.10350 DOI: https://doi.org/10.62411/jcta.10350

Rana P, Ahmad M, Stephen T, Chemingui H. Agricultural Intelligence (AI)’s Impact on Society 5.0 Farming. In: Open AI and Computational Intelligence for Society 50. IGI Global Scientific Publishing; 2025. p. 109–28. https://doi.org/10.61915/pes.009224 DOI: https://doi.org/10.4018/979-8-3693-4326-5.ch005

Clarke De La Cerda J, Bejaui R, Bonyo L. AI innovation in Africa: An overview of opportunities, risks and the legal context. Commun Technol développement. 2024;(16).https://doi.org/10.4000/12nfk DOI: https://doi.org/10.4000/12nfk

Manikandan S, Kaviya RS, Shreeharan DH, Subbaiya R, Vickram S, Karmegam N, et al. Artificial intelligence‐driven sustainability: Enhancing carbon capture for sustainable development goals–A review. Sustain Dev. 2024. https://doi.org/10.1002/sd.3222 DOI: https://doi.org/10.1002/sd.3222

Hlatshwako Z, Tsabedze V. Unlocking the future: exploring librarian’s perspectives and readiness for artificial intelligence integration in eswatini libraries. J Web Librariansh. 2024;18(3):149–68. https://doi.org/10.1080/19322909.2024.2364324 DOI: https://doi.org/10.1080/19322909.2024.2364324

CLN CC, Austin PC. Promoting Quality Education in Nigeria through the Adoption of Artificial Intelligence and Machine Learning Systems. Contemp ISSUES Educ. 2024;2(1):38–47. https://doi.org/10.48009/2_iis_2024_104. DOI: https://doi.org/10.48009/2_iis_2024_104

Downloads

Published

2025-03-25

Issue

Section

Review

How to Cite

1.
Chavula P, Kayusi F, Lungu G, Mambwe H, Uwimbabazi A. AI Application in Climate-Smart Agricultural Technologies: A Synthesis Study. LatIA [Internet]. 2025 Mar. 25 [cited 2025 Apr. 6];3:330. Available from: https://latia.ageditor.uy/index.php/latia/article/view/330