AI-Driven Climate Modeling: Validation and Uncertainty Mapping – Methodologies and Challenges
DOI:
https://doi.org/10.62486/latia2025332Keywords:
Climate Modeling, validation methodologies, uncertainties methodologies, challenges, climate systemsAbstract
Climate models are fundamental for predicting future climate conditions and guiding mitigation and adaptation strategies. This study aims to enhance the accuracy and reliability of climate modeling by integrating artificial intelligence (AI) techniques for validation and uncertainty mapping. AI-driven approaches, including machine learning-based parameterization, ensemble simulations, and probabilistic modeling, offer improvements in model precision, quality assurance, and uncertainty quantification. A systematic review methodology was applied, selecting peer-reviewed studies from 2000 to 2023 that focused on climate modeling, validation, and uncertainty estimation. Data sources included observational records, satellite measurements, and global reanalysis datasets. The study analyzed key AI-driven methodologies used for improving model accuracy, including statistical downscaling techniques and deep learning-based uncertainty prediction frameworks. Findings indicate that AI-enhanced models significantly improve climate projections by refining parameterization, enhancing bias correction, and optimizing uncertainty quantification. Machine learning applications facilitate more accurate predictions of meteorological phenomena, including temperature and precipitation variability. However, challenges remain in addressing observational biases, inter-model inconsistencies, and computational limitations. The study concludes that AI-driven advancements provide critical improvements in climate model reliability, yet ongoing refinements are necessary to address persistent uncertainties. Enhancing observational datasets, refining computational techniques, and strengthening model validation frameworks will be essential for reducing uncertainty. Effective communication of climate model outputs, including uncertainty mapping, is crucial for supporting informed policy decisions. AI-driven climate modeling is a rapidly evolving field, and continuous innovation will be key to improving predictive accuracy and resilience in climate adaptation strategies.
References
Elsawah S, Filatova T, Jakeman AJ, Kettner AJ, Zellner ML, Athanasiadis IN, et al. Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Syst Model. 2020;2:16226. https://doi.org/10.18174/sesmo.2020a16226 DOI: https://doi.org/10.18174/sesmo.2020a16226
Mudashiru RB, Sabtu N, Abustan I, Balogun W. Flood hazard mapping methods: A review. J Hydrol. 2021;603:126846. https://doi.org/10.1016/j.jhydrol.2021.126846 DOI: https://doi.org/10.1016/j.jhydrol.2021.126846
Kayusi F, Kasulla S, Malik SJ. Climate Information Services ( CIS ): A Vital Tool for Africa ’ s Climate Resilience. 2024;18(10):108–17. https://doi.org/10.9734/ajarr/2024/v18i10759 DOI: https://doi.org/10.9734/ajarr/2024/v18i10759
Fang H, Baret F, Plummer S, Schaepman‐Strub G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev Geophys. 2019;57(3):739–99.https://doi.org/10.1029/2018rg000608 DOI: https://doi.org/10.1029/2018RG000608
Shen M, Chen J, Zhuan M, Chen H, Xu C-Y, Xiong L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J Hydrol. 2018;556:10–24. https://doi.org/10.1016/j.jhydrol.2017.11.004 DOI: https://doi.org/10.1016/j.jhydrol.2017.11.004
Petros C, Feyissa S, Sileshi M, Shepande C. Factors Influencing Climate-Smart Agriculture Practices Adoption and Crop Productivity among Smallholder Farmers in Nyimba District, Zambia. F1000Research. 2024;13:815. https://doi.org/10.12688/f1000research.144332.2 DOI: https://doi.org/10.12688/f1000research.144332.2
Mume AA, Feyissa S, Chavula P, Aschalew A. Impacts of climate- climate - smart soil and water conservation practices and slope gradient on selected soil chemical properties in Eastern Ethiopia : A case study of the Kulkullessa S ub- ub - watershed , Goro Gutu D istrict. 2024;4. https://doi.org/10.55779/ng43186 DOI: https://doi.org/10.55779/ng43186
Duncanson L, Armston J, Disney M, Avitabile V, Barbier N, Calders K, et al. The importance of consistent global forest aboveground biomass product validation. Surv Geophys. 2019;40:979–99. https://doi.org/10.1007/s10712-019-09538-8 DOI: https://doi.org/10.1007/s10712-019-09538-8
Cannon AJ. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim Dyn. 2018;50(1):31–49.https://doi.org/10.1007/s00382-017-3580-6 DOI: https://doi.org/10.1007/s00382-017-3580-6
Meyer H, Pebesma E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol Evol. 2021;12(9):1620–33. https://doi.org/10.1111/2041-210x.13650 DOI: https://doi.org/10.1111/2041-210X.13650
Callaghan M, Schleussner C-F, Nath S, Lejeune Q, Knutson TR, Reichstein M, et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat Clim Chang. 2021;11(11):966–72.https://doi.org/10.1038/s41558-021-01168-6 DOI: https://doi.org/10.1038/s41558-021-01168-6
Chen S, Arrouays D, Mulder VL, Poggio L, Minasny B, Roudier P, et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma. 2022;409:115567.https://doi.org/10.1016/j.geoderma.2021.115567 DOI: https://doi.org/10.1016/j.geoderma.2021.115567
Poggio L, De Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E, et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil. 2021;7(1):217–40. https://doi.org/10.5194/soil-7-217-2021 DOI: https://doi.org/10.5194/soil-7-217-2021
Chulu M, Nalwimba N, Mudimu GT. Enhancing Zambia’s Human Capacity? The Dynamics of China-Zambia Agriculture Skills and Knowledge Transfer. CHINA-ZAMBIA Econ RELATIONS.https://doi.org/10.1007/978-3-031-52815-6_7 DOI: https://doi.org/10.1007/978-3-031-52815-6_7
Kunda BCK, Phiri J. Towards Leveraging AI Deep Learning Technology as a means to Smart Farming In Developing Countries: A case of Zambia. In: Proceedings of International Conference for ICT (ICICT)-Zambia. 2023. p. 114–21.https://doi.org/10.1007/978-981-97-3302-6_32 DOI: https://doi.org/10.1007/978-981-97-3302-6_32
Beven K. Environmental modelling: an uncertain future? CRC press; 2018.https://doi.org/10.1201/9781482288575-14 DOI: https://doi.org/10.1201/9781482288575
Chabrillat S, Ben-Dor E, Cierniewski J, Gomez C, Schmid T, van Wesemael B. Imaging spectroscopy for soil mapping and monitoring. Surv Geophys. 2019;40:361–99.https://doi.org/10.1007/s10712-019-09524-0 DOI: https://doi.org/10.1007/s10712-019-09524-0
Ali U, Shamsi MH, Hoare C, Mangina E, O’Donnell J. Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative analysis. Energy Build. 2021;246:111073. https://doi.org/10.1016/j.enbuild.2021.111073 DOI: https://doi.org/10.1016/j.enbuild.2021.111073
Salcedo-Sanz S, Ghamisi P, Piles M, Werner M, Cuadra L, Moreno-Martínez A, et al. Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Inf Fusion. 2020;63:256–72. https://doi.org/10.1016/j.inffus.2020.07.004 DOI: https://doi.org/10.1016/j.inffus.2020.07.004
Lamichhane S, Kumar L, Wilson B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma. 2019;352:395–413.https://doi.org/10.1016/j.geoderma.2019.05.031 DOI: https://doi.org/10.1016/j.geoderma.2019.05.031
Hassani A, Azapagic A, Shokri N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat Commun. 2021;12(1):6663. https://doi.org/10.1038/s41467-021-26907-3 DOI: https://doi.org/10.1038/s41467-021-26907-3
Srivastava V, Lafond V, Griess VC. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CABI Rev. 2019;(2019):1–13. https://doi.org/10.1079/pavsnnr201914020 DOI: https://doi.org/10.1079/PAVSNNR201914020
Nijp JJ, Temme AJAM, van Voorn GAK, Kooistra L, Hengeveld GM, Soons MB, et al. Spatial early warning signals for impending regime shifts: A practical framework for application in real‐world landscapes. Glob Chang Biol. 2019;25(6):1905–21.https://doi.org/10.1111/gcb.14591 DOI: https://doi.org/10.1111/gcb.14591
Liang Y, Quan D, Wang F, Jia X, Li M, Li T. Financial big data analysis and early warning platform: a case study. IEEE Access. 2020;8:36515–26. https://doi.org/10.1109/access.2020.2969039 DOI: https://doi.org/10.1109/ACCESS.2020.2969039
Perera D, Agnihotri J, Seidou O, Djalante R. Identifying societal challenges in flood early warning systems. Int J Disaster Risk Reduct. 2020;51:101794. https://doi.org/10.1016/j.ijdrr.2020.101794 DOI: https://doi.org/10.1016/j.ijdrr.2020.101794
Ceccato P, Connor SJ, Jeanne I, Thomson MC. Application of geographical information systems and remote sensing technologies for assessing and monitoring malaria risk. Parassitologia. 2005;47(1):81–96.https://doi.org/10.1109/igarss.2006.74 DOI: https://doi.org/10.1109/IGARSS.2006.74
Fritz S, See L, Bayas JCL, Waldner F, Jacques D, Becker-Reshef I, et al. A comparison of global agricultural monitoring systems and current gaps. Agric Syst. 2019;168:258–72. https://doi.org/10.1016/j.agsy.2018.05.010 DOI: https://doi.org/10.1016/j.agsy.2018.05.010
Merz B, Kuhlicke C, Kunz M, Pittore M, Babeyko A, Bresch DN, et al. Impact forecasting to support emergency management of natural hazards. Rev Geophys. 2020;58(4):e2020RG000704. https://doi.org/10.1029/2020rg000704 DOI: https://doi.org/10.1029/2020RG000704
Verdin J, Funk C, Senay G, Choularton R. Climate science and famine early warning. Philos Trans R Soc B Biol Sci. 2005;360(1463):2155–68. https://doi.org/10.1098/rstb.2005.1754 DOI: https://doi.org/10.1098/rstb.2005.1754
Li Y, Sun X, Zhu X, Cao H. An early warning method of landscape ecological security in rapid urbanizing coastal areas and its application in Xiamen, China. Ecol Modell. 2010;221(19):2251–60.https://doi.org/10.1016/j.ecolmodel.2010.04.016 DOI: https://doi.org/10.1016/j.ecolmodel.2010.04.016
Berg A, Borensztein E, Pattillo C. Assessing early warning systems: how have they worked in practice? IMF Staff Pap. 2005;52(3):462–502. https://doi.org/10.2307/30035972 DOI: https://doi.org/10.2307/30035972
Chapple K, Zuk M. Forewarned: The use of neighborhood early warning systems for gentrification and displacement. Cityscape. 2016;18(3):109–30.https://doi.org/10.1177/0885412217716439 DOI: https://doi.org/10.1177/0885412217716439
Shehabuddeen NTMH, Probert DR. Excavating the technology landscape: deploying technology intelligence to detect early warning signals. In: 2004 IEEE International Engineering Management Conference (IEEE Cat No 04CH37574). IEEE; 2004. p. 332–6.https://doi.org/10.1109/iemc.2004.1407130 DOI: https://doi.org/10.1109/IEMC.2004.1407130
Newnham E, Mitchell C, Balsari S, Leaning J. The Changing Landscape o f Early Warning Systems. Promot Eff Decis Mak Action i n Disasters Policy briefing HARVARD TH CHAN Sch PUBLIC Heal. 2017.https://doi.org/10.1007/s00038-017-1036-8 DOI: https://doi.org/10.1007/s00038-017-1036-8
Assumpção TH, Popescu I, Jonoski A, Solomatine DP. Citizen observations contributing to flood modelling: Opportunities and challenges. Hydrol Earth Syst Sci. 2018;22(2):1473–89.https://doi.org/10.5194/hess-22-1473-2018 DOI: https://doi.org/10.5194/hess-22-1473-2018
Chavula P, Alemu B, Ntezimana MG, Kazekula EM. Carbon Trading to Combat Climate Change. 2022;6(9):55–61.
Turyasingura B, Chavula P, Hirwa H, Mohammed FS, Ayiga N, Bojago E, et al. A Systematic Review and Meta-analysis of Climate Change and Water Resources in Sub-Sahara Africa. 2022.https://doi.org/10.21203/rs.3.rs-2281917/v1 DOI: https://doi.org/10.21203/rs.3.rs-2281917/v1
Chavula P, Umer Y, Abdi E, Uwimbabazi A, Habowa C, Mensah GB. Ethnoveterinary Practices for Wild Medicinal Plants from Malawi , Rwanda , and Ethiopia : A Critical Review Keywords : 2024;4010(6):109–14.https://doi.org/10.36346/sarjaf.2024.v06i06.002 DOI: https://doi.org/10.36346/sarjaf.2024.v06i06.002
Kayusi F, Kasulla S, Malik SJ, Chavula P, Kengere D. Policy Influence on Genetic Modification : Innovations in Enhancing Crop Nutrition Partners Universal Multidisciplinary Research Journal ( PUMRJ ). 2024;(November):37–49. https://doi.org/10.62486/latia202585 DOI: https://doi.org/10.62486/latia202585
Kadi Kadi HA, Njau LN, Mwikya J, Kamga A. The state of climate information services for agriculture and food security in West African countries. CCAFS Work Pap. 2011.https://doi.org/10.1016/j.gloenvcha.2016.12.002 DOI: https://doi.org/10.1016/j.gloenvcha.2016.12.002
Aggarwal PK, Baethegan WE, Cooper P, Gommes R, Lee B, Meinke H, et al. Managing climatic risks to combat land degradation and enhance food security: key information needs. Procedia Environ Sci. 2010;1:305–12. https://doi.org/10.1016/j.proenv.2010.09.019 DOI: https://doi.org/10.1016/j.proenv.2010.09.019
Kadi Kadi HA,Njau LN, Mwikya J, Kamga A. The state of climate information services for agriculture and food security in East African countries. CCAFS Work Pap. 2011. https://doi.org/10.4135/9789353885953.n3 DOI: https://doi.org/10.4135/9789353885953.n3
Ngigi MW, Muange EN. Access to climate information services and climate-smart agriculture in Kenya: a gender-based analysis.2022;174(3–4). .https://doi.org/10.1007/s10584-022-03445-5 DOI: https://doi.org/10.1007/s10584-022-03445-5
Muema E, Mburu J, Coulibaly J, Mutune J. Determinants of access and utilisation of seasonal climate information services among smallholder farmers in Makueni County, Kenya. Heliyon. 2018;4(11).https://doi.org/10.1016/j.heliyon.2018.e00889 DOI: https://doi.org/10.1016/j.heliyon.2018.e00889
Kirui VC. Evaluating access and use of dissemination pathways for delivering climate information services to vulnerable people in semi arid Kenya. 2012;2(9):44–53.https://doi.org/10.7176/ikm/10-5-04 DOI: https://doi.org/10.7176/IKM/10-5-04
Georgeson L, Maslin M, Poessinouw M. Global disparity in the supply of commercial weather and climate information services. Sci Adv. 2017;3(5):e1602632.https://doi.org/10.1126/sciadv.1602632 DOI: https://doi.org/10.1126/sciadv.1602632
Selvaraju R, Gommes R, Bernardi M. Climate science in support of sustainable agriculture and food security. Clim Res. 2011;47(1–2):95–110.https://doi.org/10.3354/cr00954 DOI: https://doi.org/10.3354/cr00954
Sintayehu DW. Impact of climate change on biodiversity and associated key ecosystem services in Africa : a systematic review. Ecosyst Heal Sustain. 2018;4(9):225–39.https://doi.org/10.1080/20964129.2018.1530054 DOI: https://doi.org/10.1080/20964129.2018.1530054
Lungu G, Abdurahman A, Turyasingura B, Ndeke C, Zulu B. A Comparative Analysis of the Nutritional Values of Two Differently Preserved Caterpillar Species ( Gynanisa maja and Gonimbrasia zambesina ) in Chitambo District , Zambia. 2024;6(2):217–29.https://doi.org/10.1007/s42690-022-00848-w DOI: https://doi.org/10.1007/s42690-022-00848-w
Vermeulen SJ, Aggarwal PK, Ainslie A, Angelone C, Campbell BM, Challinor AJ, et al. Agriculture, food security and climate change: Outlook for knowledge, tools and action. CCAFS Rep. 2010.https://doi.org/10.1016/j.envsci.2011.09.003 DOI: https://doi.org/10.1016/j.envsci.2011.09.003
Sorgho R, Quiñonez CAM, Louis VR, Winkler V, Dambach P, Sauerborn R, et al. Climate change policies in 16 West African countries: A systematic review of adaptation with a focus on agriculture, food security, and nutrition. Int J Environ Res Public Health. 2020;17(23):8897. https://doi.org/10.3390/ijerph18030945. DOI: https://doi.org/10.3390/ijerph17238897
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fredrick Kayusi , Petros Chavula, Gilbert Lungu , Hockings Mambwe (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.