Exploration of regularities in bipartite graphs using GEOGEBRA software

Authors

  • Elisa Oliva Universidad Nacional de San Juan Author
  • Mathias Díaz Universidad Nacional de San Juan Author

DOI:

https://doi.org/10.62486/latia202451

Keywords:

Complete Bipartite Graph, Eigenvalues, Generalization

Abstract

A classroom proposal is presented to integrate contents of Graph Theory and Linear Algebra in complete bipartite graphs, linking adjacency and Laplacian matrices, the eigenvalues of graphs will be determined, applicable to connectivity concepts. Students will be given exploration activities working with GeoGebra software, starting from several particular cases, with table works and questionnaires to be completed, in order to determine patterns on the eigenvalues of adjacency and Laplacian matrices of complete bipartite graphs. The work with patterns will lead to the generalization process, to abstract properties from observation and experimentation on examples. This learning experience builds bridges between the concrete and the symbolic, and the student is initiated in research

References

Alemán de Sánchez, A. (2002). La enseñanza de la matemática asistida por computador. Recuperado en Julio de 2019

de:https://es.scribd.com/document/7795982/La–Tecnologia–y–La–Mat

Castro, E., Cañadas, M. C. y Molina, M. (2010). El razonamiento inductivo como generador de conocimiento matemático. UNO, 54. Recuperado de: http://digibug.ugr.es/bitstream/10481/26079/6/Uno-54-_2010.pdf

Coloma, M. L. (2020). Las Tics como herramienta metodológica en matemática. Revista ESPACIOS Vol. 41 (11) , 1-9. Recuperado el 6 de 08 de 2020, de http://www.academia.edu/download/62945190/Articulo_Espacios_TICS20200413- 81578- 14jzkam.pdf

Cubria, F(2018). Energía de matrices. Tesis de maestría. Recuperado en Noviembre de 2023 de: https://www.fing.edu.uy/imerl/grupos/gia/pdf/fcubria_mas.pdf Eady M., Lockyer L. (2018). Technology and teachingstrategies. Tools forlearning, vol

N° 4.

Herrera M., Izquierdo J., Pérez - García R. y Ayala-Cabrera D. La regularización del grafo de la red de abastecimiento de agua para la propuesta de su sectorización. ResearchGate. Recuperado de https://www.researchgate.net/publication/288965452_La_regularizacion_del_grafo_de_l a_red_de_abastecimiento_de_agua_para_la_propuesta_de_su_sectorizacion

Joshua, J y Dupin, J. (2005). Introducción a la didáctica de las ciencias y de la matemática. Buenos Aires. Colihue.

Lesley L., Freiman V. (2004). Tracking primary student ś understanding of

patterns. In Proceeeding of the 28thConference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 415-422). Norway. PME.

Mañas, J. (2013). Utilización de las tic en el aula. GeoGebra y wiris. (Tesis de maestría). Universidad de Almería, España. Recuperado de http://repositorio.ual.es/bitstream/handle/10835/2289/Trabajo.pdf?sequence=1

Papic M. (2007). Promotting repeating patterns with Young children-more than just alternating colours. AustralianPrimaryMathemathicsClassroom, 12(1), 8.

Pochulu M. y Rodríguez M. (2016). Educación Matemática. Aportes a la formación docente desde distintos enfoques teóricos. Los Polvorines, Argentina. UNGS. Radford, L. (2013). En torno a tres problemas de la generalización. En: L. R.ico,

M. C. Cañadas,J. Gutiérrez, M. Molina y I. Segovia (Eds.). Investigación en Didáctica de la Matemática. España: Editorial Comares.

Rangel Álvarez, L (2012) Patrones y Regularidades Numéricas: Razonamiento Inductivo. Universidad Nacional de Colombia, Colombia.

Real, M. (2013). Las TIC en el proceso de enseñanza y aprendizaje de las matemáticas. personal.us.es, 1-13. Recuperado el 3 de 08 de 2020, de https://personal.us.es/suarez/ficheros/tic_matematicas.pdf

Rodríguez, M. (2017). Criterios para valorar el uso de nuevas tecnologías en la clase de matemática. En P. Barreiro, P. Leonian, T. Marino, M. Pochulu y M. Rodríguez (Eds.), Perspectivas metodológicas en la enseñanza y en la investigación en educación matemática. (pp. 71 - 94). Los Polvorines, Argentina. UNGS.

Sinclair, N. y Yurita, V.(2008). To be or to become: How Dynamic geometry changes discourse. Research in: Mathematics Education, 10, 135-150. DOI: https://doi.org/10.1080/14794800802233670

UNESCO (2005). Formación docente y las tecnologías de Información y Comunicación, Santiago.

Zabala, S. Z. (2012). Pedagogía Informacional: Nuevo paradigma para educar en la sociedad de la información. recursos.portaleducoas.org, 1-18. Recuperado el 2 de 08 de 2020, de https://recursos.portaleducoas.org/sites/default/files/1757.pdf

Bhagat, P. K., Choudhary, P., & Singh, Kh. M. (2021). A novel approach based on fully connected weighted bipartite graph for zero-shot learning problems. Journal of Ambient Intelligence and Humanized Computing, 12(9), 8647–8662. https://doi.org/10.1007/s12652-020-02615-6 DOI: https://doi.org/10.1007/s12652-020-02615-6

Blöcker, C., & Rosvall, M. (2020). Mapping flows on bipartite networks. Physical Review E, 102(5), 052305. https://doi.org/10.1103/PhysRevE.102.052305 DOI: https://doi.org/10.1103/PhysRevE.102.052305

Chakraborty, B., & Mandal, M. (2022). Regularity of symbolic powers of certain graphs (arXiv:2203.08572). arXiv. https://doi.org/10.48550/arXiv.2203.08572

Dung, L. X., Hien, T. T., Nguyen, H. D., & Trung, T. N. (2021). Regularity and Koszul property of symbolic powers of monomial ideals. Mathematische Zeitschrift, 298(3), 1487–1522. https://doi.org/10.1007/s00209-020-02657-8 DOI: https://doi.org/10.1007/s00209-020-02657-8

Emadi Kouchak, M. M., Safaei, F., & Reshadi, M. (2023). Graph entropies-graph energies indices for quantifying network structural irregularity. The Journal of Supercomputing, 79(2), 1705–1749. https://doi.org/10.1007/s11227-022-04724-9 DOI: https://doi.org/10.1007/s11227-022-04724-9

Habib, M., Mouatadid, L., Sopena, É., & Zou, M. (2024). (????,????)—Modules in Graphs. SIAM Journal on Discrete Mathematics, 38(1), 566–589. https://doi.org/10.1137/21M1443534 DOI: https://doi.org/10.1137/21M1443534

Habib, M., Mouatadid, L., & Zou, M. (2020). Approximating Modular Decomposition Is Hard. In M. Changat & S. Das (Eds.), Algorithms and Discrete Applied Mathematics (pp. 53–66). Springer International Publishing. https://doi.org/10.1007/978-3-030-39219-2_5 DOI: https://doi.org/10.1007/978-3-030-39219-2_5

Hang, N. T., & Hien, T. T. (2023). Regularity of powers of cover ideals of bipartite graphs. International Journal of Algebra and Computation, 33(02), 317–335. https://doi.org/10.1142/S0218196723500169 DOI: https://doi.org/10.1142/S0218196723500169

Jin, Y., Zhang, W., He, X., Wang, X., & Wang, X. (2020). Syndrome-aware Herb Recommendation with Multi-Graph Convolution Network. 2020 IEEE 36th International Conference on Data Engineering (ICDE), 145–156. https://doi.org/10.1109/ICDE48307.2020.00020 DOI: https://doi.org/10.1109/ICDE48307.2020.00020

Koley, M., & Römer, T. (2022). Seminormality, canonical modules, and regularity of cut polytopes. Journal of Pure and Applied Algebra, 226(1), 106797. https://doi.org/10.1016/j.jpaa.2021.106797 DOI: https://doi.org/10.1016/j.jpaa.2021.106797

Lin, R. (2021). Conditional matching preclusion for regular bipartite graphs and their Cartesian product. Discrete Applied Mathematics, 299, 17–25. https://doi.org/10.1016/j.dam.2021.04.011 DOI: https://doi.org/10.1016/j.dam.2021.04.011

Megias, D., Alatrista Salas, H., Salas, J., Maehara Aliaga, Y., & Núñez del Prado, M. (2022). A graph-based differentially private algorithm for mining frequent sequential patterns. https://doi.org/10.3390/app12042131

Nandi, R., & Nanduri, R. (2022). On regularity bounds and linear resolutions of toric algebras of graphs. Journal of Commutative Algebra, 14(2), 285–296. https://doi.org/10.1216/jca.2022.14.285 DOI: https://doi.org/10.1216/jca.2022.14.285

Nandi, R., & Nanduri, R. (2023). On regularity of Rees algebras of edge ideals of cone graphs. Indian Journal of Pure and Applied Mathematics, 54(1), 28–37. https://doi.org/10.1007/s13226-022-00226-9 DOI: https://doi.org/10.1007/s13226-022-00226-9

Nanduri, R. (2022). On regularity of symbolic Rees algebras and symbolic powers of vertex cover ideals of graphs. Proceedings of the American Mathematical Society, 150(5), 1955–1965. https://doi.org/10.1090/proc/15824 DOI: https://doi.org/10.1090/proc/15824

Neves, J. (2020). Regularity of the vanishing ideal over a bipartite nested ear decomposition. Journal of Algebra and Its Applications, 19(07), 2050126. https://doi.org/10.1142/S0219498820501261 DOI: https://doi.org/10.1142/S0219498820501261

Neves, J., Vaz Pinto, M., & Villarreal, R. H. (2020). Joins, ears and Castelnuovo–Mumford regularity. Journal of Algebra, 560, 67–88. https://doi.org/10.1016/j.jalgebra.2020.05.014 DOI: https://doi.org/10.1016/j.jalgebra.2020.05.014

Nunez-del-Prado, M., Maehara-Aliaga, Y., Salas, J., Alatrista-Salas, H., & Megías, D. (2022). A Graph-Based Differentially Private Algorithm for Mining Frequent Sequential Patterns. Applied Sciences, 12(4), Article 4. https://doi.org/10.3390/app12042131 DOI: https://doi.org/10.3390/app12042131

Shen, Y.-H., & Zhu, G. (2023). Powers of generalized binomial edge ideals of path graphs (arXiv:2310.20235). arXiv. https://doi.org/10.48550/arXiv.2310.20235

Wang, H., & Tang, Z. (2023). Regularity of powers of binomial edge ideals of complete multipartite graphs. Czechoslovak Mathematical Journal, 73(3), 793–810. https://doi.org/10.21136/CMJ.2023.0246-22 DOI: https://doi.org/10.21136/CMJ.2023.0246-22

Wu, Y., Yin, Z., Zhou, K., Wang, R., Yang, Y., Yin, Z., Ruan, C., & Zhang, Y. (2021). A Hybrid-scales Graph Contrastive learning Framework for Discovering Regularities in Traditional Chinese Medicine Formula. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1104–1111. https://doi.org/10.1109/BIBM52615.2021.9669658 DOI: https://doi.org/10.1109/BIBM52615.2021.9669658

Zhang, X., Wang, H., Yu, J., Chen, C., Wang, X., & Zhang, W. (2022). Polarity-based graph neural network for sign prediction in signed bipartite graphs. World Wide Web, 25(2), 471–487. https://doi.org/10.1007/s11280-022-01015-4 DOI: https://doi.org/10.1007/s11280-022-01015-4

Published

2024-07-21

Issue

Section

Original

How to Cite

1.
Oliva E, Díaz M. Exploration of regularities in bipartite graphs using GEOGEBRA software. LatIA [Internet]. 2024 Jul. 21 [cited 2025 Aug. 17];2:51. Available from: https://latia.ageditor.uy/index.php/latia/article/view/51