Enhancing  Adaptive Learning Through Spectrum of Individuality Theory: A Neuroplasticity-Informed AI Approach to Dynamic Behavioral Modeling in Education

Authors

DOI:

https://doi.org/10.62486/latia202572

Keywords:

Spectrum of Individuality Theory, AI-driven adaptive learning, Neuroplasticity, Ethical implications, Dynamic personality modelling

Abstract

This study investigates the efficacy of integrating the Spectrum of Individuality Theory (SIT)—a dynamic, neuroplasticity-informed framework—into artificial intelligence (AI) systems for adaptive learning. Traditional AI models, rooted in static personality frameworks like the Five-Factor Model (FFM), often fail to capture real-time behavioral variability, limiting their adaptability. In a mixed-methods experiment, 120 undergraduate students were stratified into SIT-driven (n=60) and FFM-based (n=60) AI learning groups. The SIT system utilized real-time EEG and eye-tracking data to adjust content delivery, while the FFM system relied on fixed trait categorizations. Results demonstrated that the SIT group outperformed the FFM group in cognitive retention (mean post-test scores: 25.3 vs. 22.7; p < 0.01, Cohen’s d = 0.86) and exhibited progressive engagement improvements (Session 8 UES: 4.30 vs. 3.70; p < 0.001). Neurophysiological data revealed reduced stress biomarkers (theta/beta ratios: 3.15 vs. 3.75; p < 0.001), correlating with enhanced emotional regulation. However, ethical concerns, particularly data privacy (SIT: 4.10 vs. FFM: 3.20; d = 0.98), were heightened in the SIT group. These findings validate SIT’s potential to advance context-aware AI but underscore ethical risks tied to granular behavioral tracking. The study bridges psychological theory with AI design, advocating for interdisciplinary collaboration to balance adaptability with responsible innovation.

References

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012 DOI: https://doi.org/10.1016/j.inffus.2019.12.012

Cools, R. (2012). Dopaminergic control of the striatum for high-level cognition. Current Opinion in Neurobiology, 22(2), 226–232. https://doi.org/10.1016/j.conb.2011.11.014 DOI: https://doi.org/10.1016/j.conb.2011.11.014

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679 DOI: https://doi.org/10.1177/2053951716679679

Delorme, A., & Makeig, S. (2004). EEGLAB: An open-source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 DOI: https://doi.org/10.1016/j.jneumeth.2003.10.009

Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377–401. https://doi.org/10.1146/annurev.neuro.27.070203.144216 DOI: https://doi.org/10.1146/annurev.neuro.27.070203.144216

Dweck, C. S. (2017). From needs to goals and representations: Foundations for a unified theory of motivation, personality, and development. Psychological Review, 124(6), 689–719. https://doi.org/10.1037/rev0000082 DOI: https://doi.org/10.1037/rev0000082

Fleeson, W. (2001). Toward a structure- and process-integrated view of personality: Traits as density distributions of states. Journal of Personality and Social Psychology, 80(6), 1011–1027. https://doi.org/10.1037/0022-3514.80.6.1011 DOI: https://doi.org/10.1037//0022-3514.80.6.1011

Fleeson, W., & Gallagher, P. (2009). The implications of Big Five standing for the distribution of trait manifestation in behavior: Fifteen experience-sampling studies and a meta-analysis. Journal of Personality and Social Psychology, 97(6), 1097–1114. https://doi.org/10.1037/a0016786 DOI: https://doi.org/10.1037/a0016786

Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26(1), 1–26. https://doi.org/10.1080/1047840X.2014.940781 DOI: https://doi.org/10.1080/1047840X.2014.940781

Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The Knowledge-Learning-Instruction framework: Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798. https://doi.org/10.1111/j.1551-6709.2012.01245.x DOI: https://doi.org/10.1111/j.1551-6709.2012.01245.x

McCrae, R. R., & Costa, P. T. (1997). Personality trait structure as a human universal. American Psychologist, 52(5), 509–516. https://doi.org/10.1037/0003-066X.52.5.509

McCrae, R. R., & Costa, P. T. (1997). Personality trait structure as a human universal. American Psychologist, 52(5), 509–516. https://doi.org/10.1037/0003-066X.52.5.509 DOI: https://doi.org/10.1037//0003-066X.52.5.509

Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L., & Konstan, J. A. (2014). Exploring the filter bubble: The effect of using recommender systems on content diversity. Proceedings of the 23rd International Conference on World Wide Web (pp. 677–686). https://doi.org/10.1145/2566486.2568012 DOI: https://doi.org/10.1145/2566486.2568012

O’Brien, H. L., Cairns, P., & Hall, M. (2018). A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. International Journal of Human-Computer Studies, 112, 28–39. https://doi.org/10.1016/j.ijhcs.2018.01.004 DOI: https://doi.org/10.1016/j.ijhcs.2018.01.004

Park, D. C., & Bischoff-Grethe, A. (2013). Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restorative Neurology and Neuroscience, 31(5), 703–710. https://doi.org/10.3233/RNN-130339

Park, H. D., & Bischoff-Grethe, A. (2013). A neuroimaging biomarker for sustained experimental and clinical pain. Nature Medicine, 19(8), 1047–1053. https://doi.org/10.1038/nm.3249 DOI: https://doi.org/10.1038/nm.3249

Park, S., & Bischoff-Grethe, A. (2013). Resting-state functional connectivity. In D. W. Pfaff (Ed.), Neuroscience in the 21st Century (pp. 1–23). Springer. https://doi.org/10.1007/978-1-4614-1997-6_99 DOI: https://doi.org/10.1007/978-1-4614-1997-6_99

Tzanou, M. (2020). The impact of the GDPR on cross-border data flows in the European Union. International Data Privacy Law, 10(1), 34–48. https://doi.org/10.1093/idpl/ipz002 DOI: https://doi.org/10.1093/idpl/ipz002

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393 DOI: https://doi.org/10.1177/1745691617693393

Zaki, J. (2018). Empathy in the digital age. Scientific American, 319(5), 68–73. https://doi.org/10.1038/scientificamerican1118-68 DOI: https://doi.org/10.1038/scientificamerican1118-68

Zimmerman, J. (2020). AI privacy risks in educational technology: A review of the literature. Journal of Learning Analytics, 7(3), 1–15. https://doi.org/10.18608/jla.2020.73.1. DOI: https://doi.org/10.18608/jla.2020.73.1

Downloads

Published

2025-03-03

Issue

Section

Original

How to Cite

1.
Swargiary K. Enhancing  Adaptive Learning Through Spectrum of Individuality Theory: A Neuroplasticity-Informed AI Approach to Dynamic Behavioral Modeling in Education. LatIA [Internet]. 2025 Mar. 3 [cited 2025 May 14];3:72. Available from: https://latia.ageditor.uy/index.php/latia/article/view/72