Role of Artificial Intelligence in Disseminating Climate Information Services in Africa
DOI:
https://doi.org/10.62486/latia202576Keywords:
Artificial Intelligence (AI), Big Data Analytics, Climate Information Services (CIS), Climate Resilience, Machine Learning, Natural Language Processing (NLP)Abstract
Climate Information Services (CIS) are critical for enabling communities in Africa to make informed decisions in the face of climate variability and change. However, the dissemination of CIS in Africa faces significant challenges, including limited access to data, inadequate infrastructure, and language and cultural barriers. This paper explores the role of Artificial Intelligence (AI) in enhancing the dissemination of CIS across the continent. AI technologies, including machine learning, natural language processing (NLP), and big data analytics, offer promising solutions to these challenges by improving data collection, processing, and communication. Machine learning algorithms can enhance the accuracy of climate forecasts and provide tailored advisories for agriculture and disaster risk reduction. NLP can bridge the communication gap by translating complex climate data into local languages, making it accessible to rural communities. Big data analytics enables the integration of diverse datasets to generate comprehensive climate models and risk assessments. The paper also presents case studies from sub-Saharan Africa, demonstrating the practical implementation of AI in CIS, such as drought prediction, early warning systems, and agricultural advisories. These case studies highlight the potential of AI to improve the accuracy, timeliness, and relevance of climate information, particularly for vulnerable rural populations. The paper concludes with future directions, emphasizing the need for investment in infrastructure, capacity building, and policy frameworks to support the sustainable integration of AI in CIS. By leveraging AI, Africa can enhance its resilience to climate change and improve the livelihoods of its communities.
References
Chuvieco E. Fundamentals of satellite remote sensing: An environmental approach. CRC press; 2020. DOI: https://doi.org/10.1201/9780429506482
Karamitrou A, Sturt F, Bogiatzis P, Beresford-Jones D. Towards the use of artificial intelligence deep learning networks for detection of archaeological sites. Surf Topogr Metrol Prop. 2022;10(4):44001. DOI: https://doi.org/10.1088/2051-672X/ac9492
Ganeshkumar C, Jena SK, Sivakumar A, Nambirajan T. Artificial intelligence in agricultural value chain: review and future directions. J Agribus Dev Emerg Econ. 2023;13(3):379–98. DOI: https://doi.org/10.1108/JADEE-07-2020-0140
Feng C, Liu Y, Zhang J. A taxonomical review on recent artificial intelligence applications to PV integration into power grids. Int J Electr Power Energy Syst. 2021;132:107176. DOI: https://doi.org/10.1016/j.ijepes.2021.107176
Ramteke PL, Kshirsagar U. The Role of Machine Intelligence in Agriculture: A Case Study. Res Trends Artif Intell Internet Things. 2023;54. DOI: https://doi.org/10.2174/9789815136449123010007
Bonhotal J, Schwarz M. Improving Turf and Soil Health, Reducing Energy Use and Assessing Tick Populations by Mulching Leaves in Place. Compost Sci Util. 2024;31(3–4):116–32. DOI: https://doi.org/10.1080/1065657X.2024.2370854
Sow S, Ranjan S, Seleiman MF, Alkharabsheh HM, Kumar M, Kumar N, et al. Artificial Intelligence for Maximizing Agricultural Input Use Efficiency: Exploring Nutrient, Water and Weed Management Strategies. Phyt. 2024;93(7). DOI: https://doi.org/10.32604/phyton.2024.052241
Dewi RK, Fukuda M, Takashima N, Yagioka A, Komatsuzaki M. Soil carbon sequestration and soil quality change between no-tillage and conventional tillage soil management after 3 and 11 years of organic farming. Soil Sci Plant Nutr. 2022;68(1):133–48. DOI: https://doi.org/10.1080/00380768.2021.1997552
Palsaniya DR, Kumar TK, Chaudhary M, Choudhary M. Effect of reduced tillage and mulching on soil health in Sesbania alley cropping based rainfed food-fodder systems. Arch Agron Soil Sci. 2023;69(10):1750–64. DOI: https://doi.org/10.1080/03650340.2022.2111025
Naik SK, Jha BK, Singh AK. Drip Fertigated Planting Systems with Polythene Mulching on Cauliflower–Eggplant Cropping Systems in Hot and Subhumid Climate: Impact on Soil Health and Crop Yield. Commun Soil Sci Plant Anal. 2022;53(10):1261–76. DOI: https://doi.org/10.1080/00103624.2022.2046026
Fu B, Chen L, Huang H, Qu P, Wei Z. Impacts of crop residues on soil health: A review. Environ Pollut Bioavailab. 2021;33(1):164–73. DOI: https://doi.org/10.1080/26395940.2021.1948354
Cao Q, Li G, Yang F, Kong F, Cui Z, Jiang X, et al. Eleven-year mulching and tillage practices alter the soil quality and bacterial community composition in Northeast China. Arch Agron Soil Sci. 2022;68(9):1274–89. DOI: https://doi.org/10.1080/03650340.2021.1890719
Si P, Liu E, He W, Sun Z, Dong W, Yan C, et al. Effect of no-tillage with straw mulch and conventional tillage on soil organic carbon pools in Northern China. Arch Agron Soil Sci. 2018;64(3):398–408. DOI: https://doi.org/10.1080/03650340.2017.1359410
Kassam A, Friedrich T, Derpsch R. Global spread of conservation agriculture. Int J Environ Stud. 2019;76(1):29–51. DOI: https://doi.org/10.1080/00207233.2018.1494927
Mukarumbwa P, Taruvinga A. Landrace and GM maize cultivars’ selection choices among rural farming households in the Eastern Cape Province, South Africa. GM Crops Food. 2023;14(1):1–15. DOI: https://doi.org/10.1080/21645698.2023.2215146
Eyring V, Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P, et al. Taking climate model evaluation to the next level. Nat Clim Chang. 2019;9(2):102–10. DOI: https://doi.org/10.1038/s41558-018-0355-y
Terzi S, Torresan S, Schneiderbauer S, Critto A, Zebisch M, Marcomini A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J Environ Manage. 2019;232:759–71. DOI: https://doi.org/10.1016/j.jenvman.2018.11.100
Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF, Parnell S, et al. Outstanding challenges in the transferability of ecological models. Trends Ecol Evol. 2018;33(10):790–802. DOI: https://doi.org/10.1016/j.tree.2018.08.001
Karpov A, Cherniakhovsky D, Gorelova J. The opportunities for sustainable agriculture in CIS: balancing on the wire. In: Sowing the Seeds for Sustainability: Agriculture, Biodiversity, Economics and Society: Proceedings of the Eighth Interactive Session Held at the Second IUCN World Conservation Congress, Amman, Jordan, 7 October 2000. IUCN; 2001. p. 74.
Duczmal KW, des Semences C, Rights IP, Union SUS. Agricultural research and technology transfer to rural communities in CEEC, CIS and other countries in transition. FAO Plant Prod Prot Pap. 2001;201–16.
Damba OT, Kizito F, Bonilla-Findji O, Yeboah S, Oppong-Mensah B, Clottey V, et al. Climate Smart Agriculture (CSA)-Climate Smart Information Services (CIS) Prioritization in Ghana: Smart Assessments and Outcomes. 2021;
Csaki C, Jambor A. Convergence or divergence-Transition in agriculture of Central and Eastern Europe and Commonwealth of Independent States revisited. Agric Econ Ekon. 2019;65(4). DOI: https://doi.org/10.17221/195/2018-AGRICECON
Frantál B, Frajer J, Martinát S, Brisudová L. The curse of coal or peripherality? Energy transitions and the socioeconomic transformation of Czech coal mining and post-mining regions. Morav Geogr Reports. 2022;30(4):237–56. DOI: https://doi.org/10.2478/mgr-2022-0016
Simpson GB, Jewitt GPW. The development of the water-energy-food nexus as a framework for achieving resource security: A review. Front Environ Sci. 2019;7(FEB):1–9. DOI: https://doi.org/10.3389/fenvs.2019.00008
Ahmed K, Sachindra DA, Shahid S, Demirel MC, Chung E-S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol Earth Syst Sci. 2019;23(11):4803–24. DOI: https://doi.org/10.5194/hess-23-4803-2019
Salman SA, Shahid S, Ismail T, Ahmed K, Wang X-J. Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos Res. 2018;213:509–22. DOI: https://doi.org/10.1016/j.atmosres.2018.07.008
Formosa-Jordan P, Ibañes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS One. 2014;9(4):e95744. DOI: https://doi.org/10.1371/journal.pone.0095744
Gruber A, Scanlon T, van der Schalie R, Wagner W, Dorigo W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst Sci Data. 2019;11(2):717–39. DOI: https://doi.org/10.5194/essd-11-717-2019
Mizik T, Torok A, Jambor A, Kovacs S, Sipos L. The agricultural competitiveness of the CIS countries in international trade. 2018;
Babazadeh R, Razmi J, Pishvaee MS, Rabbani M. A non-radial DEA model for location optimization of Jatropha curcas L. cultivation. Ind Crops Prod. 2015;69:197–203. DOI: https://doi.org/10.1016/j.indcrop.2015.02.006
Diluiso F, Walk P, Manych N, Cerutti N, Chipiga V, Workman A, et al. Coal transitions - Part 1: A systematic map and review of case study learnings from regional, national, and local coal phase-out experiences. Environ Res Lett. 2021;16(11). DOI: https://doi.org/10.1088/1748-9326/ac1b58
Pedde S, Kok K, Onigkeit J, Brown C, Holman I, Harrison PA. Bridging uncertainty concepts across narratives and simulations in environmental scenarios. Reg Environ Chang. 2019;19:655–66. DOI: https://doi.org/10.1007/s10113-018-1338-2
Abramowitz G, Herger N, Gutmann E, Hammerling D, Knutti R, Leduc M, et al. ESD reviews: Model dependence in multi-model climate ensembles: Weighting, sub-selection and out-of-sample testing. Earth Syst Dyn. 2019;10(1):91–105. DOI: https://doi.org/10.5194/esd-10-91-2019
Gerbelová H, Spisto A, Giaccaria S. Regional energy transition: An analytical approach applied to the slovakian coal region. Energies. 2021;14(1). DOI: https://doi.org/10.3390/en14010110
Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, Lee J, et al. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. Elife. 2020;9:e45310. DOI: https://doi.org/10.7554/eLife.45310
Miles I. Research and development (R&D) beyond manufacturing: the strange case of services R&D. R&d Manag. 2007;37(3):249–68. DOI: https://doi.org/10.1111/j.1467-9310.2007.00473.x
Assumpção TH, Popescu I, Jonoski A, Solomatine DP. Citizen observations contributing to flood modelling: Opportunities and challenges. Hydrol Earth Syst Sci. 2018;22(2):1473–89. DOI: https://doi.org/10.5194/hess-22-1473-2018
Mizik T, Gál P, Török Á. Does agricultural trade competitiveness matter? the case of the CIS countries. AGRIS on-line Pap Econ Informatics. 2020;12(1):61–72. DOI: https://doi.org/10.7160/aol.2020.1200106
Lima MGB, Gupta J. Studying Global Environmental Meetings. Glob Environ Polit. 2013;13(August):46–64. DOI: https://doi.org/10.1162/GLEP_a_00166
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci data. 2018;5(1):1–12. DOI: https://doi.org/10.1038/sdata.2018.214
Thellufsen JZ, Lund H, Sorknæs P, Østergaard PA, Chang M, Drysdale D, et al. Smart energy cities in a 100% renewable energy context. Renew Sustain Energy Rev. 2020;129(May). DOI: https://doi.org/10.1016/j.rser.2020.109922
Brunner MI, Slater L, Tallaksen LM, Clark M. Challenges in modeling and predicting floods and droughts: A review. Wiley Interdiscip Rev Water. 2021;8(3):e1520. DOI: https://doi.org/10.1002/wat2.1520
Prina MG, Manzolini G, Moser D, Nastasi B, Sparber W. Classification and challenges of bottom-up energy system models - A review. Renew Sustain Energy Rev [Internet]. 2020;129:109917. Available from: https://doi.org/10.1016/j.rser.2020.109917 DOI: https://doi.org/10.1016/j.rser.2020.109917
Malakar NK, Hulley GC, Hook SJ, Laraby K, Cook M, Schott JR. An operational land surface temperature product for Landsat thermal data: Methodology and validation. IEEE Trans Geosci Remote Sens. 2018;56(10):5717–35. DOI: https://doi.org/10.1109/TGRS.2018.2824828
Seeman ED, O’Hara M. Customer relationship management in higher education: using information systems to improve the student‐school relationship. Campus-wide Inf Syst. 2006;23(1):24–34. DOI: https://doi.org/10.1108/10650740610639714
Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA. Uncertainty in the environmental modelling process–a framework and guidance. Environ Model Softw. 2007;22(11):1543–56. DOI: https://doi.org/10.1016/j.envsoft.2007.02.004
Zhang W, Gu X, Tang L, Yin Y, Liu D, Zhang Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022;109:1–17. DOI: https://doi.org/10.1016/j.gr.2022.03.015
Bochenek B, Ustrnul Z. Machine learning in weather prediction and climate analyses—applications and perspectives. Atmosphere (Basel). 2022;13(2):180. DOI: https://doi.org/10.3390/atmos13020180
Mudashiru RB, Sabtu N, Abustan I, Balogun W. Flood hazard mapping methods: A review. J Hydrol. 2021;603:126846. DOI: https://doi.org/10.1016/j.jhydrol.2021.126846
Feyissa S, Sileshi M, Shepande C. Factors Influencing Climate-Smart Agriculture Practices Adoption and Crop Productivity among Smallholder Farmers in Nyimba District , Zambia Chavula Petros. 2024;1–24.
Avci O, Abdeljaber O, Kiranyaz S, Hussein M, Gabbouj M, Inman DJ. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech Syst Signal Process. 2021;147:107077. DOI: https://doi.org/10.1016/j.ymssp.2020.107077
Ley A, Haehnel P, Bormann H. Addressing the challenges of climate scenario-based impact studies in modelling groundwater recharge on small barrier islands at the German North Sea coast. J Hydrol Reg Stud. 2023;50:101578. DOI: https://doi.org/10.1016/j.ejrh.2023.101578
Dargan S, Kumar M, Ayyagari MR, Kumar G. A survey of deep learning and its applications: a new paradigm to machine learning. Arch Comput Methods Eng. 2020;27:1071–92. DOI: https://doi.org/10.1007/s11831-019-09344-w
Kayusi F, Kasulla S, Malik SJ, Chavula P, Kengere D. Policy Influence on Genetic Modification : Innovations in Enhancing Crop Nutrition Partners Universal Multidisciplinary Research Journal ( PUMRJ ). 2024;(November):37–49.
Selvaraju R, Gommes R, Bernardi M. Climate science in support of sustainable agriculture and food security. Clim Res. 2011;47(1–2):95–110. DOI: https://doi.org/10.3354/cr00954
Balaghi R, Badjeck M-C, Bakari D, De Pauw E, De Wit A, Defourny P, et al. Managing climatic risks for enhanced food security: key information capabilities. Procedia Environ Sci. 2010;1:313–23. DOI: https://doi.org/10.1016/j.proenv.2010.09.020
Owusu V, Ma W, Renwick A, Emuah D. Does the use of climate information contribute to climate change adaptation? Evidence from Ghana. Clim Dev [Internet]. 2021;13(7):616–29. Available from: https://doi.org/10.1080/17565529.2020.1844612 DOI: https://doi.org/10.1080/17565529.2020.1844612
Lungu G, Abdurahman A, Turyasingura B, Ndeke C, Zulu B. A Comparative Analysis of the Nutritional Values of Two Differently Preserved Caterpillar Species ( Gynanisa maja and Gonimbrasia zambesina ) in Chitambo District , Zambia. 2024;6(2):217–29.
Ofoegbu C, New M. Evaluating the effectiveness and efficiency of climate information communication in the African agricultural sector: a systematic analysis of climate services. Agriculture. 2022;12(2):160. DOI: https://doi.org/10.3390/agriculture12020160
Waiswa M, Mulamba P, Isabirye P. Climate information for food security: Responding to user’s climate information needs. In: Climate Prediction and Agriculture: Advances and Challenges. Springer; 2007. p. 225–48. DOI: https://doi.org/10.1007/978-3-540-44650-7_22
Zommers Z, Lumbroso D, Cowell R, Sitati A, Vogel E. Early warning systems for disaster risk reduction including climate change adaptation. In: The Routledge handbook of disaster risk reduction including climate change adaptation. Routledge; 2017. p. 429–44. DOI: https://doi.org/10.4324/9781315684260-40
Dakos V, Carpenter SR, van Nes EH, Scheffer M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos Trans R Soc B Biol Sci. 2015;370(1659):20130263. DOI: https://doi.org/10.1098/rstb.2013.0263
Newnham E, Mitchell C, Balsari S, Leaning J. The Changing Landscape of Early Warning Systems Policy Brief Promoting Effective Decision Making and Action in Disasters. 2017;(April).
Naidu S, Sajinkumar KS, Oommen T, Anuja VJ, Samuel RA, Muraleedharan C. Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci Front [Internet]. 2018;9(6):1871–82. Available from: https://doi.org/10.1016/j.gsf.2017.10.008 DOI: https://doi.org/10.1016/j.gsf.2017.10.008
Fu Z, Ciais P, Makowski D, Bastos A, Stoy PC, Ibrom A, et al. Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Glob Chang Biol. 2022;28(6):2111–23. DOI: https://doi.org/10.1111/gcb.16050
Hoylman ZH, Bocinsky RK, Jencso KG. Drought assessment has been outpaced by climate change: empirical arguments for a paradigm shift. Nat Commun. 2022;13(1):2715. DOI: https://doi.org/10.1038/s41467-022-30316-5
Ardabili S, Mosavi A, Dehghani M, Várkonyi-Kóczy AR. Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review. In: Engineering for Sustainable Future: Selected papers of the 18th International Conference on Global Research and Education Inter-Academia–2019 18. Springer; 2020. p. 52–62. DOI: https://doi.org/10.1007/978-3-030-36841-8_5
Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA. Challenges in combining projections from multiple climate models. J Clim. 2010;23(10):2739–58. DOI: https://doi.org/10.1175/2009JCLI3361.1
Sharma N, Sharma R, Jindal N. Machine learning and deep learning applications-a vision. Glob Transitions Proc. 2021;2(1):24–8. DOI: https://doi.org/10.1016/j.gltp.2021.01.004
Sahoo S, Singha C, Govind A. Advanced prediction of rice yield gaps under climate uncertainty using machine learning techniques in Eastern India. J Agric Food Res. 2024;18:101424. DOI: https://doi.org/10.1016/j.jafr.2024.101424
Aristodemou L, Tietze F. The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Pat Inf. 2018;55:37–51. DOI: https://doi.org/10.1016/j.wpi.2018.07.002
Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Phys medica. 2021;83:9–24. DOI: https://doi.org/10.1016/j.ejmp.2021.02.006
Cowls J, Tsamados A, Taddeo M, Floridi L. The AI gambit: leveraging artificial intelligence to combat climate change—opportunities, challenges, and recommendations. Ai Soc. 2023;1–25.
Soori M, Arezoo B, Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn Robot. 2023;3:54–70. DOI: https://doi.org/10.1016/j.cogr.2023.04.001
Published
Issue
Section
License
Copyright (c) 2025 Petros Chavula , Fredrick Kayusi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.