AI-Powered Satellite Imagery Processing for Global Air Traffic Surveillance
DOI:
https://doi.org/10.62486/latia202580Keywords:
Artificial Intelligence (AI), Satellite-Based Air Traffic Monitoring, Deep Learning, Computer Vision, Remote Sensing, Real-Time Aircraft TrackingAbstract
The increasing complexity of global air traffic management requires innovative surveillance solutions beyond traditional radar. This chapter explores the integration of artificial intelligence (AI) and machine learning (ML) in satellite imagery processing for enhanced air traffic surveillance. The proposed AI framework utilizes satellite remote sensing, computer vision algorithms, and geo-stamped aircraft data to improve real-time detection and classification. It addresses limitations in conventional systems, particularly in areas lacking radar coverage. The study outlines a three-phase approach: extracting radar coverage from satellite imagery, labeling data with geo-stamped aircraft locations, and applying deep learning models for classification. YOLO and Faster R-CNN models distinguish aircraft from other objects with high accuracy. Experimental trials demonstrate AI-enhanced satellite monitoring's feasibility, achieving improved detection in high-traffic zones. The system enhances situational awareness, optimizes flight planning, reduces airspace congestion, and strengthens security. It also aids disaster response by enabling rapid search-and-rescue missions. Challenges like adverse weather and nighttime monitoring remain, requiring infrared sensors and radar-based techniques. By combining big data analytics, cloud computing, and satellite monitoring, the study offers a scalable, cost-effective solution for future air traffic management. Future research will refine models and expand predictive analytics for autonomous surveillance, revolutionizing aviation safety and operational intelligence.
References
Sarker IH, Khan AI, Abushark YB, Alsolami F. Internet of things (iot) security intelligence: a comprehensive overview, machine learning solutions and research directions. Mob Networks Appl. 2023;28(1):296–312. DOI: https://doi.org/10.1007/s11036-022-01937-3
Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA. Challenges in combining projections from multiple climate models. J Clim. 2010;23(10):2739–58. DOI: https://doi.org/10.1175/2009JCLI3361.1
Ferreira PVR, Paffenroth R, Wyglinski AM, Hackett TM, Bilén SG, Reinhart RC, et al. Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles. IEEE J Sel Areas Commun. 2018;36(5):1030–41. DOI: https://doi.org/10.1109/JSAC.2018.2832820
Sharma N, Sharma R, Jindal N. Machine learning and deep learning applications-a vision. Glob Transitions Proc. 2021;2(1):24–8. DOI: https://doi.org/10.1016/j.gltp.2021.01.004
Baustert P, Othoniel B, Rugani B, Leopold U. Uncertainty analysis in integrated environmental models for ecosystem service assessments: Frameworks, challenges and gaps. Ecosyst Serv. 2018;33:110–23. DOI: https://doi.org/10.1016/j.ecoser.2018.08.007
Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA. Uncertainty in the environmental modelling process–a framework and guidance. Environ Model Softw. 2007;22(11):1543–56. DOI: https://doi.org/10.1016/j.envsoft.2007.02.004
Kayusi F, Kasulla S, Malik SJ, Wasike JA, Lungu G, Mambwe H, et al. Advanced AI , Machine Learning and Deep Learning Techniques for Climate Change Studies : A Review. 2024;4010(6):101–8. DOI: https://doi.org/10.36346/sarjaf.2024.v06i06.001
Sahoo S, Singha C, Govind A. Advanced prediction of rice yield gaps under climate uncertainty using machine learning techniques in Eastern India. J Agric Food Res. 2024;18:101424. DOI: https://doi.org/10.1016/j.jafr.2024.101424
Teng J, Jakeman AJ, Vaze J, Croke BFW, Dutta D, Kim S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ Model Softw. 2017;90:201–16. DOI: https://doi.org/10.1016/j.envsoft.2017.01.006
Fiseha BM, Setegn SG, Melesse AM, Volpi E, Fiori A. Impact of climate change on the hydrology of upper Tiber River Basin using bias corrected regional climate model. Water Resour Manag. 2014;28:1327–43. DOI: https://doi.org/10.1007/s11269-014-0546-x
Kulinich M. A Markov chain method for weighting climate model ensembles and uncertainty estimation on spatially explicit data. UNSW Sydney; 2023.
Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E. High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco. Hydrol Earth Syst Sci. 2013;17(10):3721–39. DOI: https://doi.org/10.5194/hess-17-3721-2013
de Brogniez D, Ballabio C, Stevens A, Jones RJA, Montanarella L, van Wesemael B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur J Soil Sci. 2015;66(1):121–34. DOI: https://doi.org/10.1111/ejss.12193
Roy CJ, Oberkampf WL. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput Methods Appl Mech Eng. 2011;200(25–28):2131–44. DOI: https://doi.org/10.1016/j.cma.2011.03.016
Allen JI, Somerfield PJ, Gilbert FJ. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J Mar Syst. 2007;64(1–4):3–14. DOI: https://doi.org/10.1016/j.jmarsys.2006.02.010
Verburg PH, Neumann K, Nol L. Challenges in using land use and land cover data for global change studies. Glob Chang Biol. 2011;17(2):974–89. DOI: https://doi.org/10.1111/j.1365-2486.2010.02307.x
Boer MM, Nolan RH, Resco De Dios V, Clarke H, Price OF, Bradstock RA. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire. Earth’s Futur. 2017;5(12):1196–202. DOI: https://doi.org/10.1002/2017EF000657
Al Kharusi S, BenZvi SY, Bobowski JS, Bonivento W, Brdar V, Brunner T, et al. SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy. New J Phys. 2021;23(3):31201. DOI: https://doi.org/10.1088/1367-2630/abde33
Noguera I, Vicente‐Serrano SM, Domínguez‐Castro F. The rise of atmospheric evaporative demand is increasing flash droughts in Spain during the warm season. Geophys Res Lett. 2022;49(11):e2021GL097703. DOI: https://doi.org/10.1029/2021GL097703
Hoylman ZH, Bocinsky RK, Jencso KG. Drought assessment has been outpaced by climate change: empirical arguments for a paradigm shift. Nat Commun. 2022;13(1):2715. DOI: https://doi.org/10.1038/s41467-022-30316-5
Cuevas S. Examining climate change adaptation measures: an early warning system in the Philippines. Int J Clim Chang Strateg Manag. 2012;4(4):358–85. DOI: https://doi.org/10.1108/17568691211277719
Anderson-Berry L, Achilles T, Panchuk S, Mackie B, Canterford S, Leck A, et al. Sending a message: How significant events have influenced the warnings landscape in Australia. Int J Disaster Risk Reduct. 2018;30(March):5–17. DOI: https://doi.org/10.1016/j.ijdrr.2018.03.005
Hartley D, Nelson N, Walters R, Arthur R, Yangarber R, Madoff L, et al. The landscape of international event-based biosurveillance. Emerg Health Threats J. 2010;3(1):7096. DOI: https://doi.org/10.3402/ehtj.v3i0.7096
Bury TM, Sujith RI, Pavithran I, Scheffer M, Lenton TM, Anand M, et al. Deep learning for early warning signals of tipping points. Proc Natl Acad Sci. 2021;118(39):e2106140118. DOI: https://doi.org/10.1073/pnas.2106140118
Basher R. Global early warning systems for natural hazards: systematic and people-centred. Philos Trans R Soc a Math Phys Eng Sci. 2006;364(1845):2167–82. DOI: https://doi.org/10.1098/rsta.2006.1819
Li Y, Sun X, Zhu X, Cao H. An early warning method of landscape ecological security in rapid urbanizing coastal areas and its application in Xiamen, China. Ecol Modell. 2010;221(19):2251–60. DOI: https://doi.org/10.1016/j.ecolmodel.2010.04.016
Nijp JJ, Temme AJAM, van Voorn GAK, Kooistra L, Hengeveld GM, Soons MB, et al. Spatial early warning signals for impending regime shifts: A practical framework for application in real‐world landscapes. Glob Chang Biol. 2019;25(6):1905–21. DOI: https://doi.org/10.1111/gcb.14591
Šakić Trogrlić R, van den Homberg M, Budimir M, McQuistan C, Sneddon A, Golding B. Early warning systems and their role in disaster risk reduction. In: Towards the “perfect” weather warning: bridging disciplinary gaps through partnership and communication. Springer International Publishing Cham; 2022. p. 11–46. DOI: https://doi.org/10.1007/978-3-030-98989-7_2
Pulwarty RS, Sivakumar MVK. Information systems in a changing climate: Early warnings and drought risk management. Weather Clim Extrem. 2014;3:14–21. DOI: https://doi.org/10.1016/j.wace.2014.03.005
Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Phys medica. 2021;83:9–24. DOI: https://doi.org/10.1016/j.ejmp.2021.02.006
Zohuri B, Rahmani FM. Artificial intelligence driven resiliency with machine learning and deep learning components. Japan J Res. 2023;1(1). DOI: https://doi.org/10.33425/2690-8077.1002
Tapeh ATG, Naser MZ. Artificial intelligence, machine learning, and deep learning in structural engineering: a scientometrics review of trends and best practices. Arch Comput Methods Eng. 2023;30(1):115–59. DOI: https://doi.org/10.1007/s11831-022-09793-w
Soori M, Arezoo B, Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn Robot. 2023;3:54–70. DOI: https://doi.org/10.1016/j.cogr.2023.04.001
Callaghan M, Schleussner C-F, Nath S, Lejeune Q, Knutson TR, Reichstein M, et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat Clim Chang. 2021;11(11):966–72. DOI: https://doi.org/10.1038/s41558-021-01168-6
Waaswa A, Oywaya Nkurumwa A, Mwangi Kibe A, Ngeno Kipkemoi J. Climate-Smart agriculture and potato production in Kenya: review of the determinants of practice. Clim Dev. 2022;14(1):75–90. DOI: https://doi.org/10.1080/17565529.2021.1885336
Sarker IH. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci. 2021;2(6):420. DOI: https://doi.org/10.1007/s42979-021-00815-1
Balyen L, Peto T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pacific J Ophthalmol. 2019;8(3):264–72. DOI: https://doi.org/10.1097/01.APO.0000586388.81551.d0
Taye MM. Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers. 2023;12(5):91. DOI: https://doi.org/10.3390/computers12050091
Ley A, Haehnel P, Bormann H. Addressing the challenges of climate scenario-based impact studies in modelling groundwater recharge on small barrier islands at the German North Sea coast. J Hydrol Reg Stud. 2023;50:101578. DOI: https://doi.org/10.1016/j.ejrh.2023.101578
Melinda V, Williams T, Anderson J, Davies JG, Davis C. Enhancing waste-to-energy conversion efficiency and sustainability through advanced artificial intelligence integration. Int Trans Educ Technol. 2024;2(2):183–92. DOI: https://doi.org/10.33050/itee.v2i2.597
Kim KB, Kwon H-H, Han D. Bias correction methods for regional climate model simulations considering the distributional parametric uncertainty underlying the observations. J Hydrol. 2015;530:568–79. DOI: https://doi.org/10.1016/j.jhydrol.2015.10.015
Borra S, Thanki R, Dey N. Satellite image analysis: clustering and classification. Springer; 2019. DOI: https://doi.org/10.1007/978-981-13-6424-2
Taulli T, Oni M. Artificial intelligence basics. Springer; 2019. DOI: https://doi.org/10.1007/978-1-4842-5028-0
Rao VS, Satish MA, Prasad MB. Artificial intelligence: Principles and applications. Leilani Katie Publication; 2024.
Koumetio Tekouabou SC, Diop EB, Azmi R, Chenal J. Artificial intelligence based methods for smart and sustainable urban planning: a systematic survey. Arch Comput Methods Eng. 2023;30(2):1421–38. DOI: https://doi.org/10.1007/s11831-022-09844-2
Ganeshkumar C, Jena SK, Sivakumar A, Nambirajan T. Artificial intelligence in agricultural value chain: review and future directions. J Agribus Dev Emerg Econ. 2023;13(3):379–98. DOI: https://doi.org/10.1108/JADEE-07-2020-0140
Goodell JW, Kumar S, Lim WM, Pattnaik D. Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. J Behav Exp Financ. 2021;32:100577. DOI: https://doi.org/10.1016/j.jbef.2021.100577
Chowdhary CL, Alazab M, Chaudhary A, Hakak S, Gadekallu TR. Computer vision and recognition systems using machine and deep learning approaches: fundamentals, Technologies and Applications. Institution of Engineering and Technology; 2021. DOI: https://doi.org/10.1049/PBPC042E
Bolon-Canedo V, Remeseiro B. Feature selection in image analysis: a survey. Artif Intell Rev. 2020;53(4):2905–31. DOI: https://doi.org/10.1007/s10462-019-09750-3
Li W, Hsu C-Y. GeoAI for large-scale image analysis and machine vision: recent progress of artificial intelligence in geography. ISPRS Int J Geo-Information. 2022;11(7):385. DOI: https://doi.org/10.3390/ijgi11070385
Tuia D, Schindler K, Demir B, Camps-Valls G, Zhu XX, Kochupillai M, et al. Artificial intelligence to advance Earth observation: a perspective. arXiv Prepr arXiv230508413. 2023;
Sisodiya N, Dube N, Thakkar P. Next-generation artificial intelligence techniques for satellite data processing. Artif Intell Tech Satell Image Anal. 2020;235–54. DOI: https://doi.org/10.1007/978-3-030-24178-0_11
Chuvieco E. Fundamentals of satellite remote sensing: An environmental approach. CRC press; 2020. DOI: https://doi.org/10.1201/9780429506482
Fourati F, Alouini M-S. Artificial intelligence for satellite communication: A review. Intell Converg Networks. 2021;2(3):213–43. DOI: https://doi.org/10.23919/ICN.2021.0015
Wang Y, Fu EY, Zhai X, Yang C, Pei F. Introduction of artificial Intelligence. In: Intelligent Building Fire Safety and Smart Firefighting. Springer; 2024. p. 65–97. DOI: https://doi.org/10.1007/978-3-031-48161-1_4
Sun Z, Sandoval L, Crystal-Ornelas R, Mousavi SM, Wang J, Lin C, et al. A review of earth artificial intelligence. Comput Geosci. 2022;159:105034. DOI: https://doi.org/10.1016/j.cageo.2022.105034
Russo A, Lax G. Using artificial intelligence for space challenges: A survey. Appl Sci. 2022;12(10):5106. DOI: https://doi.org/10.3390/app12105106
Lucci S, Kopec D, Musa SM. Artificial intelligence in the 21st century. Mercury learning and information; 2022. DOI: https://doi.org/10.1515/9781683922520
Tuia D, Schindler K, Demir B, Zhu XX, Kochupillai M, Džeroski S, et al. Artificial Intelligence to Advance Earth Observation: A review of models, recent trends, and pathways forward. IEEE Geosci Remote Sens Mag. 2024; DOI: https://doi.org/10.1109/MGRS.2024.3425961
Karamitrou A, Sturt F, Bogiatzis P, Beresford-Jones D. Towards the use of artificial intelligence deep learning networks for detection of archaeological sites. Surf Topogr Metrol Prop. 2022;10(4):44001. DOI: https://doi.org/10.1088/2051-672X/ac9492
Mwaanga C, Mulenga J, Lubinda M, Siame M, Kaliba-Chishimba K, Mulenga MC, et al. COVID-19 Pandemic and Its Implications on Small and Medium Enterprises (SMEs) Operations in Zambia. J Bus Adm Res. 2021;10(1):32–40. DOI: https://doi.org/10.5430/jbar.v10n1p32
Casero-Ripollés A. Impact of Covid-19 on the media system. Communicative and democratic consequences of news consumption during the outbreak. Casero-Ripollés, Andreu (2020)“Impact Covid-19 media Syst Commun Democr consequences news Consum Dur outbreak” El Prof la Inf. 2020;29(2):e290223. DOI: https://doi.org/10.3145/epi.2020.mar.23
Mwiinga B, Sikazwe W, Kangwa V, Katebe M, Matafwali M. Operational strategies of small medium enterprises (SMEs) in Lusaka Zambia–post Covid-19. 2020;
Nchanji EB, Lutomia CK, Chirwa R, Templer N, Rubyogo JC, Onyango P. Immediate impacts of COVID-19 pandemic on bean value chain in selected countries in sub-Saharan Africa. Agric Syst. 2021;188:103034. DOI: https://doi.org/10.1016/j.agsy.2020.103034
Salcedo-Sanz S, Ghamisi P, Piles M, Werner M, Cuadra L, Moreno-Martínez A, et al. Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Inf Fusion. 2020;63:256–72. DOI: https://doi.org/10.1016/j.inffus.2020.07.004
Fang H, Baret F, Plummer S, Schaepman‐Strub G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev Geophys. 2019;57(3):739–99. DOI: https://doi.org/10.1029/2018RG000608
Fan L, Li J, Pan Y, Wang S, Yan C, Yao D. Research and application of smart grid early warning decision platform based on big data analysis. In: 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG). IEEE; 2019. p. 645–8. DOI: https://doi.org/10.1109/IGBSG.2019.8886291
Ceccato P, Connor SJ, Jeanne I, Thomson MC. Application of geographical information systems and remote sensing technologies for assessing and monitoring malaria risk. Parassitologia. 2005;47(1):81–96.
Sheehan MC, Fox MA. Early warnings: the lessons of COVID-19 for public health climate preparedness. Int J Heal Serv. 2020;50(3):264–70. DOI: https://doi.org/10.1177/0020731420928971
Cools J, Innocenti D, O’Brien S. Lessons from flood early warning systems. Environ Sci Policy. 2016;58:117–22. DOI: https://doi.org/10.1016/j.envsci.2016.01.006
Berg A, Borensztein E, Pattillo C. Assessing early warning systems: how have they worked in practice? IMF Staff Pap. 2005;52(3):462–502. DOI: https://doi.org/10.2307/30035972
Naidu S, Sajinkumar KS, Oommen T, Anuja VJ, Samuel RA, Muraleedharan C. Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci Front [Internet]. 2018;9(6):1871–82. Available from: https://doi.org/10.1016/j.gsf.2017.10.008 DOI: https://doi.org/10.1016/j.gsf.2017.10.008
Hassanien AE, Darwish A, Abdelghafar S. Machine learning in telemetry data mining of space mission: basics, challenging and future directions. Artif Intell Rev. 2020;53(5):3201–30. DOI: https://doi.org/10.1007/s10462-019-09760-1
Nakhle F, Harfouche AL. Ready, Steady, Go AI: A practical tutorial on fundamentals of artificial intelligence and its applications in phenomics image analysis. Patterns. 2021;2(9). DOI: https://doi.org/10.1016/j.patter.2021.100323
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fredrick Kayusi, Petros Chavula, Linety Juma, Rashmi Mishra (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.