Role of Redox Reactions and AI-Driven Approaches in Enhancing Nutrient Availability for Plants
DOI:
https://doi.org/10.62486/latia202586Keywords:
Redox Reactions, Nutrient Availability, Plants, Oxidation, ReductionAbstract
Empirical studies have shown that environmental variability in the field remains uncontrolled in certain cases, with research often conducted at a limited number of agricultural sites. Direct measurements of redox potential in soils have been reported, yet quantifying rapid changes in this variable across microsites proves inaccessible in situ. Existing measurements of redox potential also fail to account for variability in the identity of reduced or oxidized compounds. Additionally, methodological constraints and researcher bias, particularly in studies focusing on processes in reduced sediments, may impair interpretations of anabolic reactions resulting from oxidation.Case studies further indicate that the effects of redox potential on nitrification, net mineralization, or immobilization of other nutrients often remain unmeasured. As a result, increased denitrification might stimulate nitrification, reducing the effects of nitrogen immobilization due to increasing carbon storage in environments where reduction predominates.Given the absence of studies specifically exploring the balance between reduction and oxidation in relation to nutrient availability, assessing the magnitude and likelihood of methodological shortcomings based on prior field research remains challenging. Existing research serves as a foundation for understanding how this balance may significantly influence nutrient dynamics and availability at larger scales. Future studies manipulating redox potential in the field should consider factors that could disproportionately facilitate reductions before an eastward shift occurs in the balance between oxidation and reduction in response to organic matter addition. Addressing these gaps will enhance understanding of redox reactions and their potential role in stimulating denitrification and sulfide responses.
References
Horn, P. J. (2021). Where do the electrons go? How numerous redox processes drive phytochemical diversity: Redox processes in phytochemistry. Phytochemistry Reviews. [HTML] DOI: https://doi.org/10.1007/s11101-020-09738-w
Dou, Q., Yang, J., Peng, Y., & Zhang, L. (2023). Multipathway of nitrogen metabolism revealed by genome-centered metatranscriptomics from pyrite-guided mixotrophic partial denitrification/anammox installations. Environmental Science & Technology, 57(51), 21791-21800. [HTML] DOI: https://doi.org/10.1021/acs.est.3c08192
Mueller, P. & Megonigal, J. P. (2024). Redox control on rhizosphere priming in wetlands. Nature Geoscience. [HTML] DOI: https://doi.org/10.1038/s41561-024-01584-1
Peiffer, S., Kappler, A., Haderlein, S. B., Schmidt, C., Byrne, J. M., Kleindienst, S., ... & Planer-Friedrich, B. (2021). A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience, 14(5), 264-272. [HTML] DOI: https://doi.org/10.1038/s41561-021-00742-z
Li, Y., Yang, B., Liu, H., Li, Y., Han, Q., Feng, L., ... & Zhang, L. (2024). A pilot study of Mn redox driven nitrogen removal in municipal tailwater: Nitrogen metabolic pathway and electron transport mechanism. Chemical Engineering Journal, 152741. [HTML] DOI: https://doi.org/10.1016/j.cej.2024.152741
Zhu, X., Zhang, X., Gao, B., Ji, L., Zhao, R., & Wu, P. (2024). A critical review of Mnammox coupled with the NDMO for innovative nitrogen removal. Science of The Total Environment, 175453. [HTML] DOI: https://doi.org/10.1016/j.scitotenv.2024.175453
Fakhimi, N. & Grossman, A. R. (2024). Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems. Plants. mdpi.com DOI: https://doi.org/10.3390/plants13213015
Si, T., Chen, X., Yuan, R., Pan, S., Wang, Y., Bian, R., ... & Pan, G. (2024). Iron-modified biochars and their aging reduce soil cadmium mobility and inhibit rice cadmium uptake by promoting soil iron redox cycling. Journal of Environmental Management, 370, 122848. [HTML] DOI: https://doi.org/10.1016/j.jenvman.2024.122848
Sinha, D., Datta, S., Mishra, R., Agarwal, P., Kumari, T., Adeyemi, S. B., ... & Chen, J. T. (2023). Negative impacts of arsenic on plants and mitigation strategies. Plants, 12(9), 1815. mdpi.com DOI: https://doi.org/10.3390/plants12091815
Dorner, M., Lokesh, S., Yang, Y., & Behrens, S. (2022). Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants–A review. Science of The Total Environment, 852, 158381. nsf.gov DOI: https://doi.org/10.1016/j.scitotenv.2022.158381
Aleku, G. A. (2024). Imine reductases and reductive aminases in organic synthesis. ACS Catalysis. acs.org DOI: https://doi.org/10.1021/acscatal.4c04756
Fujii, J. (2024). Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radical Research. [HTML] DOI: https://doi.org/10.1080/10715762.2024.2407147
Qian, L. & Shi, M. (2023). Contemporary photoelectrochemical strategies and reactions in organic synthesis. Chemical Communications. rsc.org DOI: https://doi.org/10.1039/D3CC00437F
Hanefeld, U., Hollmann, F., & Paul, C. E. (2022). Biocatalysis making waves in organic chemistry. Chemical Society Reviews. rsc.org DOI: https://doi.org/10.1039/D1CS00100K
Liu, Y., Agarwal, A., Kratish, Y., & Marks, T. J. (2023). Single‐Site Carbon‐Supported Metal‐Oxo Complexes in Heterogeneous Catalysis: Structure, Reactivity, and Mechanism. Angewandte Chemie International Edition, 62(34), e202304221. wiley.com DOI: https://doi.org/10.1002/anie.202304221
Miller, A. H., Blagova, E. V., Large, B., Booth, R. L., Wilson, K. S., & Duhme-Klair, A. K. (2024). Catch-and-Release: The Assembly, Immobilization, and Recycling of Redox-Reversible Artificial Metalloenzymes. ACS catalysis, 14(5), 3218-3227. acs.org DOI: https://doi.org/10.1021/acscatal.3c05294
Raabe, D. (2023). The materials science behind sustainable metals and alloys. Chemical reviews. acs.org DOI: https://doi.org/10.1021/acs.chemrev.2c00799
Hernández‐Ruiz, R., Rubio‐Presa, R., Suárez‐Pantiga, S., Pedrosa, M. R., Fernández‐Rodríguez, M. A., Tapia, M. J., & Sanz, R. (2021). Mo–Catalyzed One‐Pot Synthesis of N‐Polyheterocycles from Nitroarenes and Glycols with Recycling of the Waste Reduction Byproduct. Substituent‐Tuned Photophysical Properties. Chemistry–A European Journal, 27(54), 13613-13623. wiley.com DOI: https://doi.org/10.1002/chem.202102000
Shennan, B. D., Berheci, D., Crompton, J. L., Davidson, T. A., Field, J. L., Williams, B. A., & Dixon, D. J. (2022). Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chemical Society Reviews, 51(14), 5878-5929. rsc.org DOI: https://doi.org/10.1039/D1CS00669J
Ali, S., Badar, M. S., Nikkhah, A., Fen, C. S., Nouri, A., Mohammad, A. W., ... & Mahmoudi, E. (2024). Progress in Nanomaterial-Driven Redox Reactions for Water Purification: A Critical Review. Desalination and Water Treatment, 100616. sciencedirect.com DOI: https://doi.org/10.1016/j.dwt.2024.100616
Pálla, T., Mirzahosseini, A., & Noszál, B. (2023). Properties of selenolate-diselenide redox equilibria in view of their thiolate-disulfide counterparts. Antioxidants. mdpi.com DOI: https://doi.org/10.3390/antiox12040822
Bartoccini, F., Retini, M., Crinelli, R., Menotta, M., Fraternale, A., & Piersanti, G. (2022). Dithiol based on L-cysteine and cysteamine as a disulfide-reducing agent. The Journal of Organic Chemistry, 87(15), 10073-10079. acs.org DOI: https://doi.org/10.1021/acs.joc.2c01050
Jayaweera, S. W., Sahin, M., Lundkvist, F., Leven, A., Tereenstra, L., Bäckman, J., ... & Olofsson, A. (2025). Misfolding of transthyretin in vivo is controlled by the redox environment and macromolecular crowding. Journal of Biological Chemistry, 301(1), 108031. sciencedirect.com DOI: https://doi.org/10.1016/j.jbc.2024.108031
Ali, A. M., Waziri, I., & Garba, H. (2024). Recent Developments in the Electron Transfer Reactions and Their Kinetic Studies. Chemical Kinetics and Catalysis-Perspectives, Developments and Applications. intechopen.com
Capperucci, A. & Tanini, D. (2024). Recent Advances in Selenium‐Mediated Redox Functional Group Interconversions. The Chemical Record. wiley.com DOI: https://doi.org/10.1002/tcr.202400174
Jordan, R. B. (2024). Reaction Types and Mechanisms. In Principles of Inorganic Chemistry: Basics and Applications (pp. 157-196). Cham: Springer International Publishing. [HTML] DOI: https://doi.org/10.1007/978-3-031-22926-8_6
Rubino, F. M. (2021). The Redox Potential of the β-93-Cysteine Thiol Group in Human Hemoglobin Estimated from In Vitro Oxidant Challenge Experiments. Molecules. mdpi.com DOI: https://doi.org/10.3390/molecules26092528
Chesneau, C., Pelletier, A., Dubot, P., Leroy, E., Goffin, A., Jørgensen, L., ... & Belbekhouche, S. (2025). Synthesis and physico-chemical investigation of thiolated dextran derivative: Design and application of a redox-responsive drug delivery system. International Journal of Biological Macromolecules, 139861. sciencedirect.com DOI: https://doi.org/10.1016/j.ijbiomac.2025.139861
Alvarez, B. & Salinas, G. (2022). Basic concepts of thiol chemistry and biology. Redox Chemistry and Biology of Thiols. [HTML] DOI: https://doi.org/10.1016/B978-0-323-90219-9.00026-1
Gebregziabher, B. S., Gebremeskel, H., Debesa, B., Ayalneh, D., Mitiku, T., Wendwessen, T., ... & Getachew, T. (2023). Carotenoids: Dietary sources, health functions, biofortification, marketing trend and affecting factors–A review. Journal of Agriculture and Food Research, 14, 100834. sciencedirect.com DOI: https://doi.org/10.1016/j.jafr.2023.100834
Kisekka, I. (2024). Assessing the State of Knowledge and Impacts of Recycled Water Irrigation on Agricultural Crops and Soils. escholarship.org
Cataldo, E., Fucile, M., & Mattii, G. B. (2022). Biostimulants in viticulture: A sustainable approach against biotic and abiotic stresses. Plants. mdpi.com DOI: https://doi.org/10.3390/plants11020162
Marques, C., Dinis, L. T., Santos, M. J., Mota, J., & Vilela, A. (2023). Beyond the bottle: exploring health-promoting compounds in wine and wine-related products—extraction, detection, quantification, aroma properties, and terroir …. Foods. mdpi.com DOI: https://doi.org/10.3390/foods12234277
Radcliffe, J. & Adin, A. (). Assessing the State of Knowledge and Impacts of Recycled Water Irrigation on Agricultural Crops and Soils. waterrf.org. waterrf.org
Nie, F., Liu, L., Cui, J., Zhao, Y., Zhang, D., Zhou, D., ... & Yan, M. (2023). Oligomeric proanthocyanidins: an updated review of their natural sources, synthesis, and potentials. Antioxidants, 12(5), 1004. mdpi.com DOI: https://doi.org/10.3390/antiox12051004
Kaushal, G. S. & Umrao, R. (). Agroforestry and Crop Production. rijmri.com. rijmri.com
Srivastava, V. & Chaturvedi, R. (2022). An interdisciplinary approach towards sustainable and higher steviol glycoside production from in vitro cultures of Stevia rebaudiana. Journal of Biotechnology. iitg.ac.in DOI: https://doi.org/10.1016/j.jbiotec.2022.08.018
Tavanti, T. R., de Melo, A. A. R., Moreira, L. D. K., Sanchez, D. E. J., dos Santos Silva, R., da Silva, R. M., & Dos Reis, A. R. (2021). Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiology and Biochemistry, 160, 386-396. agriyamada.com.br DOI: https://doi.org/10.1016/j.plaphy.2021.01.040
Francis, B., Aravindakumar, C. T., Brewer, P. B., & Simon, S. (2023). Plant nutrient stress adaptation: A prospect for fertilizer limited agriculture. Environmental and Experimental Botany, 105431. [HTML] DOI: https://doi.org/10.1016/j.envexpbot.2023.105431
Pais, I. P., Moreira, R., Semedo, J. N., Ramalho, J. C., Lidon, F. C., Coutinho, J., ... & Scotti-Campos, P. (2022). Wheat crop under waterlogging: potential soil and plant effects. Plants, 12(1), 149. mdpi.com DOI: https://doi.org/10.3390/plants12010149
Sousa, B., Rodrigues, F., Soares, C., Martins, M., Azenha, M., Lino-Neto, T., ... & Fidalgo, F. (2022). Impact of combined heat and salt stresses on tomato plants—insights into nutrient uptake and redox homeostasis. Antioxidants, 11(3), 478. mdpi.com DOI: https://doi.org/10.3390/antiox11030478
Majumdar, A., Dubey, P. K., Giri, B., Moulick, D., Srivastava, A. K., Roychowdhury, T., ... & Jaiswal, M. K. (2023). Combined effects of dry-wet irrigation, redox changes and microbial diversity on soil nutrient bioavailability in the rice field. Soil and Tillage Research, 232, 105752. [HTML] DOI: https://doi.org/10.1016/j.still.2023.105752
Romero-Puertas, M. C., Terrón-Camero, L. C., Peláez-Vico, M. Á., Molina-Moya, E., & Sandalio, L. M. (2021). An update on redox signals in plant responses to biotic and abiotic stress crosstalk: Insights from cadmium and fungal pathogen interactions. Journal of Experimental Botany, 72(16), 5857-5875. oup.com DOI: https://doi.org/10.1093/jxb/erab271
Rai, S., Singh, P. K., Mankotia, S., Swain, J., & Satbhai, S. B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress. sciencedirect.com DOI: https://doi.org/10.1016/j.stress.2021.100008
Chaudhry, S. & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports. [HTML] DOI: https://doi.org/10.1007/s00299-021-02759-5
Selim, S., Abuelsoud, W., Alsharari, S. S., Alowaiesh, B. F., Al-Sanea, M. M., Al Jaouni, S., ... & AbdElgawad, H. (2021). Improved mineral acquisition, sugars metabolism and redox status after mycorrhizal inoculation are the basis for tolerance to vanadium stress in C3 and C4 grasses. Journal of Fungi, 7(11), 915. mdpi.com DOI: https://doi.org/10.3390/jof7110915
Havlin, J. L. & Schlegel, A. J. (2021). Review of phosphite as a plant nutrient and fungicide. Soil systems. mdpi.com DOI: https://doi.org/10.3390/soilsystems5030052
Saleem, M. H., Afzal, J., Rizwan, M., Shah, Z. U. H., Depar, N., & Usman, K. (2022). Chromium toxicity in plants: consequences on growth, chromosomal behavior andmineral nutrient status. Turkish Journal of Agriculture and Forestry, 46(3), 371-389. tubitak.gov.tr DOI: https://doi.org/10.55730/1300-011X.3010
Ishtiaq, M., Mazhar, M. W., Maqbool, M., Hussain, T., Hussain, S. A., Casini, R., ... & Elansary, H. O. (2023). Seed priming with the selenium nanoparticles maintains the redox status in the water stressed tomato plants by modulating the antioxidant defense enzymes. Plants, 12(7), 1556. mdpi.com DOI: https://doi.org/10.3390/plants12071556
Gondal, A. H., Zafar, A., Zainab, D., Toor, M. D., Sohail, S., Ameen, S., ... & Younas, N. (2021). A detailed review study of zinc involvement in animal, plant and human nutrition. Indian Journal of Pure & Applied Biosciences, 9(2), 262-271. researchgate.net DOI: https://doi.org/10.18782/2582-2845.8652
Gao, Y., Tong, H., Zhao, Z., Cheng, N., & Wu, P. (2023). Effects of Fe oxides and their redox cycling on Cd activity in paddy soils: A review. Journal of Hazardous Materials. [HTML] DOI: https://doi.org/10.1016/j.jhazmat.2023.131665
Raffelsbauer, V., Pucha-Cofrep, F., Strobl, S., Knüsting, J., Schorsch, M., Trachte, K., ... & Beck, E. (2023). Trees with anisohydric behavior as main drivers of nocturnal evapotranspiration in a tropical mountain rainforest. PloS one, 18(3), e0282397. plos.org DOI: https://doi.org/10.1371/journal.pone.0282397
Guo, T., Zhou, D., Pang, L., Sun, S., Zhou, T., & Su, J. (2022). Perspectives on working voltage of aqueous supercapacitors. Small. [HTML] DOI: https://doi.org/10.1002/smll.202106360
Akbari, E., Faraji Naghibi, A., Veisi, M., Shahparnia, A., & Pirouzi, S. (2024). Multi-objective economic operation of smart distribution network with renewable-flexible virtual power plants considering voltage security index. Scientific Reports, 14(1), 19136. nature.com DOI: https://doi.org/10.1038/s41598-024-70095-1
Wang, W., Yuan, B., Sun, Q., & Wennersten, R. (2022). Application of energy storage in integrated energy systems—A solution to fluctuation and uncertainty of renewable energy. Journal of Energy Storage. [HTML] DOI: https://doi.org/10.1016/j.est.2022.104812
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fredrick Kayusi , Petros Chavula, Linety Juma (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.