Enhancing IoT Data Analysis with Machine Learning: A Comprehensive Overview

Authors

  • Amit Kumar Dinkar Department of Computer Science, Veer Kunwar Singh University, Ara- 802301, India Author
  • Md Alimul Haque Department of Computer Science, Veer Kunwar Singh University, Ara- 802301, India Author https://orcid.org/0000-0002-0744-0784
  • Ajay Kumar Choudhary Department of Physics, G. B. College, Ramgarh Author

DOI:

https://doi.org/10.62486/latia20249

Keywords:

Machine Learning, Internet of Thing, Security, Artificial Neural Networks

Abstract

Machine learning techniques are essential for processing the vast volume of IoT data efficiently, improving performance, and managing IoT applications effectively. Machine learning algorithms play a crucial role in detecting malicious attacks and anomalies in real-time IoT data analysis, thereby enhancing the security of IoT devices. The integration of big data analytics methods with machine learning techniques can further enhance IoT data analysis, improving the performance of IoT applications and overcoming related challenges. Real-time data collection using sensors like DHT11 and Gas level sensors, coupled with machine learning algorithms, enables efficient analysis of IoT data, aiding in the identification of anomalies and attacks. The comprehensive overview of enhancing IoT data analysis with machine learning provides insights for future research, including exploring advanced machine learning algorithms and optimizing data preprocessing techniques to enhance IoT data analysis capabilities.

References

A. Thakkar and R. Lohiya, “A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges,” Arch. Comput. Methods Eng., vol. 28, no. 4, pp. 3211–3243, 2021. DOI: https://doi.org/10.1007/s11831-020-09496-0

S. Ahmad et al., “An Integration of IoT, IoC, and IoE towards Building a Green Society,” Sci. Program., vol. 2022, 2022. DOI: https://doi.org/10.1155/2022/2673753

M. A. Haque et al., “Sustainable and efficient E-learning internet of things system through blockchain technology,” E-Learning Digit. Media, vol. 0(0), pp. 1–20, 2023, doi: https://doi.org/10.1177/20427530231156711. DOI: https://doi.org/10.1177/20427530231156711

M. A. Haque et al., “Cybersecurity in Universities: An Evaluation Model,” SN Comput. Sci., vol. 4, no. 5, p. 569, 2023, doi: 10.1007/s42979-023-01984-x. DOI: https://doi.org/10.1007/s42979-023-01984-x

A. Bhardwaj, K. Kaushik, S. Bharany, M. F. Elnaggar, M. I. Mossad, and S. Kamel, “Comparison of IoT Communication Protocols Using Anomaly Detection with Security Assessments of Smart Devices,” Processes, vol. 10, no. 10, p. 1952, 2022. DOI: https://doi.org/10.3390/pr10101952

A. Sharma, A. Jain, P. Gupta, and V. Chowdary, “Machine learning applications for precision agriculture: A comprehensive review,” IEEE Access, vol. 9, pp. 4843–4873, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3048415

V. Q. Pham, V. U. Ngo, P. H. Do, and N. H. Vân Nguyễn, “IoT Botnet Detection and Classification using Machine Learning Algorithms,” Res. Dev. Inf. Commun. Technol., pp. 38–49, 2023. DOI: https://doi.org/10.32913/mic-ict-research-vn.v2023.n1.1220

J. Deshmukh, P. Hargude, D. Ghate, S. Linge, and R. Mahajan, “Machine Learning Based IoT Network Intrusion Detection Classification,” Mach. Learn., vol. 3, no. 2, 2023.

F. Alrowais, S. Althahabi, S. S. Alotaibi, A. Mohamed, M. A. Hamza, and R. Marzouk, “Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment.,” Comput. Syst. Sci. Eng., vol. 45, no. 1, 2023. DOI: https://doi.org/10.32604/csse.2023.030188

A. Ahli, A. Raza, K. O. Akpinar, and M. Akpinar, “Binary and Multi-Class Classification on the IoT-23 Dataset,” in 2023 Advances in Science and Engineering Technology International Conferences (ASET), IEEE, 2023, pp. 1–7. DOI: https://doi.org/10.1109/ASET56582.2023.10180848

K. Kostas, M. Just, and M. A. Lones, “Externally validating the IoTDevID device identification methodology using the CIC IoT 2022 Dataset,” arXiv Prepr. arXiv2307.08679, 2023.

M. A. Hossain et al., “AI-enabled approach for enhancing obfuscated malware detection: a hybrid ensemble learning with combined feature selection techniques,” Int. J. Syst. Assur. Eng. Manag., 2024, doi: 10.1007/s13198-024-02294-y. DOI: https://doi.org/10.1007/s13198-024-02294-y

N. Abdalgawad, A. Sajun, Y. Kaddoura, I. A. Zualkernan, and F. Aloul, “Generative deep learning to detect cyberattacks for the IoT-23 dataset,” IEEE Access, vol. 10, pp. 6430–6441, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3140015

K. Ibrahimi and H. Benaddi, “Improving the ids for bot-iot dataset-based machine learning classifiers,” in 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), IEEE, 2022, pp. 1–6. DOI: https://doi.org/10.1109/CommNet56067.2022.9993869

A. Sharma and H. Babbar, “BoT-IoT: Detection of DDoS Attacks in Internet of Things for Smart Cities,” in 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, 2023, pp. 438–443.

M. A. Haque et al., “Achieving Organizational Effectiveness through Machine Learning Based Approaches for Malware Analysis and Detection,” Data Metadata, vol. 2, p. 139, 2023. DOI: https://doi.org/10.56294/dm2023139

F. Abbasi, M. Naderan, and S. E. Alavi, “Anomaly detection in Internet of Things using feature selection and classification based on Logistic Regression and Artificial Neural Network on N-BaIoT dataset,” in 2021 5th International Conference on Internet of Things and Applications (IoT), IEEE, 2021, pp. 1–7. DOI: https://doi.org/10.1109/IoT52625.2021.9469605

N. Sakthipriya, V. Govindasamy, and V. Akila, “A Comparative Analysis of various Dimensionality Reduction Techniques on N-BaIoT Dataset for IoT Botnet Detection,” in 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS), IEEE, 2023, pp. 1–6. DOI: https://doi.org/10.1109/PCEMS58491.2023.10136065

N. Almrezeq, M. A. Haque, S. Haque, and A. A. A. El-Aziz, “Device Access Control and Key Exchange (DACK) Protocol for Internet of Things,” Int. J. Cloud Appl. Comput., vol. 12, no. 1, pp. 1–14, Jan. 2022, doi: 10.4018/IJCAC.297103. DOI: https://doi.org/10.4018/IJCAC.297103

M. A. Haque, S. Haque, K. Kumar, and N. K. Singh, “A Comprehensive Study of Cyber Security Attacks, Classification, and Countermeasures in the Internet of Things,” in Digital Transformation and Challenges to Data Security and Privacy, IGI Global, 2021, pp. 63–90. DOI: https://doi.org/10.4018/978-1-7998-4201-9.ch004

M. A. Haque, S. Ahmad, D. Sonal, S. Haque, K. Kumar, and M. Rahman, “Analytical Studies on the Effectiveness of IoMT for Healthcare Systems,” Iraqi J. Sci., pp. 4719–4728, 2023. DOI: https://doi.org/10.24996/ijs.2023.64.9.34

S. Zeba, M. A. Haque, S. Alhazmi, and S. Haque, “Advanced Topics in Machine Learning,” Mach. Learn. Methods Eng. Appl. Dev., p. 197, 2022. DOI: https://doi.org/10.2174/9879815079180122010015

V. Whig, B. Othman, A. Gehlot, M. A. Haque, S. Qamar, and J. Singh, “An Empirical Analysis of Artificial Intelligence (AI) as a Growth Engine for the Healthcare Sector,” in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), IEEE, 2022, pp. 2454–2457. DOI: https://doi.org/10.1109/ICACITE53722.2022.9823607

S. Ahmad, S. Jha, A. Alam, M. Yaseen, and H. A. M. Abdeljaber, “A Novel AI-Based Stock Market Prediction Using Machine Learning Algorithm,” Sci. Program., vol. 2022, 2022. DOI: https://doi.org/10.1155/2022/4808088

M. Haque, S. Haque, K. Kumar, M. Rahman, D. Sonal, and N. Almrezeq, “Security and Privacy in Internet of Things,” in International Conference on Emerging Technologies in Computer Engineering, Springer, 2022, pp. 182–196. DOI: https://doi.org/10.1007/978-3-031-07012-9_16

S. Jha, S. Routray, and S. Ahmad, “An expert system-based IoT system for minimisation of air pollution in developing countries,” Int. J. Comput. Appl. Technol., vol. 68, no. 3, pp. 277–285, 2022. DOI: https://doi.org/10.1504/IJCAT.2022.124952

H. Qinxia, S. Nazir, M. Li, H. Ullah Khan, W. Lianlian, and S. Ahmad, “AI-enabled sensing and decision-making for IoT systems,” Complexity, vol. 2021, 2021. DOI: https://doi.org/10.1155/2021/6616279

S. M. Tahsien, H. Karimipour, and P. Spachos, “Machine learning based solutions for security of Internet of Things (IoT): A survey,” J. Netw. Comput. Appl., vol. 161, no. April, 2020, doi: 10.1016/j.jnca.2020.102630. DOI: https://doi.org/10.1016/j.jnca.2020.102630

M. A. Haque, S. Ahmad, S. Haque, K. Kumar, K. Mishra, and B. K. Mishra, “Analyzing University Students’ Awareness of Cybersecurity,” in 2023 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), IEEE, 2023, pp. 250–257. DOI: https://doi.org/10.1109/ETNCC59188.2023.10284971

Downloads

Published

2024-07-17

Issue

Section

Original

How to Cite

1.
Kumar Dinkar A, Alimul Haque M, Kumar Choudhary A. Enhancing IoT Data Analysis with Machine Learning: A Comprehensive Overview. LatIA [Internet]. 2024 Jul. 17 [cited 2025 Feb. 8];2:9. Available from: https://latia.ageditor.uy/index.php/latia/article/view/9