Prediction of Flight Areas using Machine Learning Algorithm

Authors

DOI:

https://doi.org/10.62486/latia202493

Keywords:

Machine Learning, Linear Regression, SVM, Decision Tree, KNN

Abstract

Anyone who often uses the airways wants to predict when it will be best to purchase a ticket in order to get the best possible value. Aircraft firms continuously adjust ticket prices in an effort to maximize profits. When it's anticipated that demand for more income will grow, aircraft manufacturers may raise flying prices. Information analysis for a given air route, comprising the features like take-off time, entrance time, and airways during a specified period, has been gathered in order to decrease costs. To use the machine learning models, qualities are arranged based on the information that has been gathered. The machine learning approach to determine costs based on attributes is presented in the paper below.

References

Stefanovič, P., Štrimaitis, R., & Kurasova, O. (2020). Prediction of flight time deviation for lithuanian airports using supervised machine learning model. Computational Intelligence and Neuroscience, 2020(1), 8878681. DOI: https://doi.org/10.1155/2020/8878681

Truong, D., & Choi, W. (2020). Using machine learning algorithms to predict the risk of small Unmanned Aircraft System violations in the National Airspace System. Journal of Air Transport Management, 86, 101822. DOI: https://doi.org/10.1016/j.jairtraman.2020.101822

Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., & Zhao, D. (2019). Flight delay prediction based on aviation big data and machine learning. IEEE Transactions on Vehicular Technology, 69(1), 140-150. DOI: https://doi.org/10.1109/TVT.2019.2954094

Kim, J., Justin, C., Mavris, D., & Briceno, S. (2022). Data-driven approach using machine learning for real-time flight path optimization. Journal of Aerospace Information Systems, 19(1), 3-21. DOI: https://doi.org/10.2514/1.I010940

Esmaeilzadeh, E., & Mokhtarimousavi, S. (2020). Machine learning approach for flight departure delay prediction and analysis. Transportation Research Record, 2674(8), 145-159. DOI: https://doi.org/10.1177/0361198120930014

Wang, Z., Liang, M., & Delahaye, D. (2018). A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation Research Part C: Emerging Technologies, 95, 280-294. DOI: https://doi.org/10.1016/j.trc.2018.07.019

Gupta, A., Jain, A., Varshney, A., Parmar, A., Sirohi, A., & Saini, A. K. (2023). Flight Fare Prediction Using Machine Learning Algorithm. Journal of Data Acquisition and Processing, 38(2), 2822.

Tziridis, K., Kalampokas, T., Papakostas, G. A., & Diamantaras, K. I. (2017, August). Airfare prices prediction using machine learning techniques. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 1036-1039). IEEE. DOI: https://doi.org/10.23919/EUSIPCO.2017.8081365

Tanouz, D., Subramanian, R. R., Eswar, D., Reddy, G. P., Kumar, A. R., & Praneeth, C. V. (2021, May). Credit card fraud detection using machine learning. In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 967-972). IEEE. DOI: https://doi.org/10.1109/ICICCS51141.2021.9432308

Rajankar, S., Sakhrakar, N., & Rajankar, O. (2022). Flight fare prediction using machine learning algorithms. Int. J. Eng. Res. Technol.(IJERT), 10(5).

Groves, W., & Gini, M. (2013, May). An agent for optimizing airline ticket purchasing. In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems (pp. 1341-1342).

https://towardsdatascience.com/machine-learning-basics-decisiontree-regression- 1d73ea003fda article on decision tree regression.

Bhatia, S., Goel, A. K., Naib, B. B., Singh, K., Yadav, M., & Saini, A. (2023, July). Diabetes Prediction using Machine Learning. In 2023 World Conference on Communication & Computing (WCONF) (pp. 1-6). IEEE. doi: 10.1109/WCONF58270.2023.10235187 DOI: https://doi.org/10.1109/WCONF58270.2023.10235187

Singh, K., Singh, Y., Barak, D., Yadav, M., & Özen, E. (2023). Parametric evaluation techniques for reliability of Internet of Things (IoT). International Journal of Computational Methods and Experimental Measurements, 11(2). http://doi.org/10.18280/ijcmem.110207 DOI: https://doi.org/10.18280/ijcmem.110207

Singh, K., Singh, Y., Barak, D., & Yadav, M. (2023). Evaluation of Designing Techniques for Reliability of Internet of Things (IoT). International Journal of Engineering Trends and Technology, 71(8), 102-118. https://doi.org/10.14445/22315381/IJETT-V71I8P209 DOI: https://doi.org/10.14445/22315381/IJETT-V71I8P209

Singh, K., Singh, Y., Barak, D. and Yadav, M., 2023. Comparative Performance Analysis and Evaluation of Novel Techniques in Reliability for Internet of Things with RSM. International Journal of Intelligent Systems and Applications in Engineering, 11(9s), pp.330-341. https://www.ijisae.org/index.php/IJISAE/article/view/3123

Singh, K., Yadav, M., Singh, Y., & Barak, D. (2023). Reliability Techniques in IoT Environments for the Healthcare Industry. In AI and IoT-Based Technologies for Precision Medicine (pp. 394-412). IGI Global. DOI: 10.4018/979-8-3693-0876-9.ch023 DOI: https://doi.org/10.4018/979-8-3693-0876-9.ch023

Singh, K., Singh, Y., Barak, D., & Yadav, M. (2023). Detection of Lung Cancers From CT Images Using a Deep CNN Architecture in Layers Through ML. In AI and IoT-Based Technologies for Precision Medicine (pp. 97-107). IGI Global. DOI: 10.4018/979-8-3693-0876-9.ch006 DOI: https://doi.org/10.4018/979-8-3693-0876-9.ch006

Kumar, S., Kumar, A. , Parashar, N., Moolchandani, J., Saini, A., Kumar, R., Yadav, M. , Singh, K., & Mena, Y. (2024). An Optimal Filter Selection on Grey Scale Image for De-Noising by using Fuzzy Technique. International Journal of Intelligent Systems and Applications in Engineering, 12(20s), 322–330. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5143

Singh, K., Singh, Y., Khang, A., Barak, D., & Yadav, M. (2024).Internet of Things (IoT)-Based Technologies for Reliability Evaluation with Artificial Intelligence (AI). AI and IoT Technology and Applications for Smart Healthcare Systems, 387. http://dx.doi.org/10.1201/9781032686745-23 DOI: https://doi.org/10.1201/9781032686745-23

Bhatia, S., Goel, N., Ahlawat, V., Naib, B. B., & Singh, K. (2023). A Comprehensive Review of IoT Reliability and Its Measures: Perspective Analysis. Handbook of Research on Machine Learning-Enabled IoT for Smart Applications Across Industries, 365-384. DOI: 10.4018/978-1-6684-8785-3.ch019 DOI: https://doi.org/10.4018/978-1-6684-8785-3.ch019

Singh, K., Mistrean, L., Singh, Y., Barak, D., & Parashar, A. (2023). Fraud detection in financial transactions using IOT and big data analytics. In Competitivitatea şi inovarea în economia cunoaşterii (pp. 490-494). https://doi.org/10.53486/cike2023.52 DOI: https://doi.org/10.53486/cike2023.52

Sood, K., Dev, M., Singh, K., Singh, Y., & Barak, D. (2022). Identification of Asymmetric DDoS Attacks at Layer 7 with Idle Hyperlink. ECS Transactions, 107(1), 2171. http://dx.doi.org/10.1149/10701.2171ecst DOI: https://doi.org/10.1149/10701.2171ecst

Singh, K., Yadav, M., Singh, Y., Barak, D., Saini, A., & Moreira, F. Reliability on the Internet of Things with Designing Approach for Exploratory Analysis. Frontiers in Computer Science, 6, 1382347. doi: 10.3389/fcomp.2024.1382347 DOI: https://doi.org/10.3389/fcomp.2024.1382347

Singh, K., Yadav, M., Singh, Y., & Barak, D. (2024). Finding Security Gaps and Vulnerabilities in IoT Devices. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 379-395). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch023 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch023

Hajimahmud, V. A., Singh, Y., & Yadav, M. (2024). Using a Smart Trash Can Sensor for Trash Disposal. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 311-319). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch020 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch020

Yadav, M., Hajimahmud, V. A., Singh, K., & Singh, Y. (2024). Convert Waste Into Energy Using a Low Capacity Igniter. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 301-310). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch019 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch019

Singh, K., Yadav, M., & Yadav, R. K. (2024). IoT-Based Automated Dust Bins and Improved Waste Optimization Techniques for Smart City. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 167-194). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch012 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch012

Khang, A., Singh, K., Yadav, M., & Yadav, R. K. (2024). Minimizing the Waste Management Effort by Using Machine Learning Applications. In Revolutionizing Automated Waste Treatment Systems: IoT and Bioelectronics (pp. 42-59). IGI Global. DOI: 10.4018/979-8-3693-6016-3.ch004 DOI: https://doi.org/10.4018/979-8-3693-6016-3.ch004

Sharma, H., Singh, K., Ahmed, E., Patni, J., Singh, Y., & Ahlawat, P. (2021). IoT based automatic electric appliances controlling device based on visitor counter. DOI: https://doi. org/10.13140/RG, 2(30825.83043).

Singh, K., & Barak, D. (2024). Healthcare Performance in Predicting Type 2 Diabetes Using Machine Learning Algorithms. In Driving Smart Medical Diagnosis Through AI-Powered Technologies and Applications (pp. 130-141). IGI Global. DOI: 10.4018/979-8-3693-3679-3.ch008 DOI: https://doi.org/10.4018/979-8-3693-3679-3.ch008

Groves, W., & Gini, M. (2015). On optimizing airline ticket purchase timing. ACM Transactions on Intelligent Systems and Technology (TIST), 7(1), 1-28. DOI: https://doi.org/10.1145/2733384

Wohlfarth, T., Clémençon, S., Roueff, F., & Casellato, X. (2011, December). A data-mining approach to travel price forecasting. In 2011 10th International Conference on Machine Learning and Applications and Workshops (Vol. 1, pp. 84-89). IEEE. DOI: https://doi.org/10.1109/ICMLA.2011.11

Domínguez-Menchero, J. S., & González-Rodríguez, G. (2007). Analyzing an extension of the isotonic regression problem. Metrika, 66(1), 19-30. DOI: https://doi.org/10.1007/s00184-006-0084-5

Wang, Z., Liang, M., & Delahaye, D. (2018). A hybrid machine learning model for short-term estimated time of arrival prediction in terminal manoeuvring area. Transportation Research Part C: Emerging Technologies, 95, 280-294 DOI: https://doi.org/10.1016/j.trc.2018.07.019

Yazdi, M. F., Kamel, S. R., Chabok, S. J. M., & Kheirabadi, M. (2020). Flight delay prediction based on deep learning and Levenberg-Marquart algorithm. Journal of Big Data, 7(1), 106. DOI: https://doi.org/10.1186/s40537-020-00380-z

Khaksar, H., & Sheikholeslami, A. (2019). Airline delay prediction by machine learning algorithms. Scientia Iranica, 26(5), 2689-2702.

Downloads

Published

2024-08-21

Issue

Section

Original

How to Cite

1.
Singh K, Yadav M, Hacimahmud Abdullayev V. Prediction of Flight Areas using Machine Learning Algorithm. LatIA [Internet]. 2024 Aug. 21 [cited 2025 Aug. 17];2:93. Available from: https://latia.ageditor.uy/index.php/latia/article/view/93