Challenges in Sub-Saharan Africa’s Food Systems and the Potential Role of AI

Authors

  • Petros Chavula World Agroforestry Centre, St. Eugene Office Park, Kabulonga, Lusaka, Zambia & Africa Centre of Excellence for Climate-Smart Agriculture and Biodiversity Conservation, Haramaya University, Dire Dawa, Ethiopia Author
  • Fredrick Kayusi Department of Environmental Studies, Geography & Planning, Maasai Mara University, Narok-Kenya Author https://orcid.org/0000-0003-1481-4016

DOI:

https://doi.org/10.62486/latia2025318

Keywords:

Agriculture, Artificial Intelligence, Food Systems, Machine Learning, Sub-Saharan Africa, Sustainability

Abstract

Sub-Saharan Africa (SSA) faces persistent food insecurity due to low agricultural productivity, limited access to modern technologies, and growing climate variability. This study explores the transformative potential of Artificial Intelligence (AI) to enhance food systems across SSA. The objective is to assess how AI applications—such as machine learning, remote sensing, and big data analytics—can address systemic inefficiencies in cereal crop production, with a focus on barley, millet, and sorghum. Using a systematic review approach aligned with PRISMA guidelines, literature from 2015–2025 was analyzed across multiple databases to identify empirical studies and models related to AI in SSA agriculture. Results reveal that AI can significantly improve crop monitoring, yield forecasting, and resource optimization. However, adoption barriers such as inadequate infrastructure, financial constraints, and the digital divide persist. The study concludes that while AI holds significant promise, its success in SSA depends on inclusive policies, capacity building, and localized data governance. It recommends interdisciplinary research, investment in rural digital infrastructure, and participatory innovation frameworks to empower smallholder farmers and ensure equitable AI deployment. This review provides a roadmap for integrating AI into SSA food systems to enhance resilience, productivity, and food security.

References

Mekonnen, S. A., Jalata, D. D., & Onyeaka, H. (2024). Building resilience in Sub‐Saharan Africa's food systems. https://doi.org/10.1002/fes3.563 DOI: https://doi.org/10.1002/fes3.563

Nchanji, E. B., Ageyo, O. C., Puskur, R., Templer, N., & Maereka, E. K. (2024). Towards gender-transformative metrics in seed system performance measurement: insights for policy and practice in Sub-Saharan Africa. CABI Agriculture and Bioscience, 5(1), 83. https://doi.org/10.1186/s43170-024-00291-6 DOI: https://doi.org/10.1186/s43170-024-00291-6

Mperejekumana, P., Shen, L., Gaballah, M. S., & Zhong, S. (2024). Exploring the potential and challenges of energy transition and household cooking sustainability in sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 199, 114534. https://doi.org/10.1016/j.rser.2024.114534 DOI: https://doi.org/10.1016/j.rser.2024.114534

Wudil, A. H., Usman, M., Rosak-Szyrocka, J., Pilař, L., & Boye, M. (2022). Reversing years for global food security: A review of the food security situation in Sub-Saharan Africa (SSA). International Journal of Environmental Research and Public Health, 19(22), 14836. https://doi.org/10.3390/ijerph192214836 DOI: https://doi.org/10.3390/ijerph192214836

Kayusi, F., & Chavula, P. (2025). Enhancing Urban Green Spaces: AI-Driven Insights for Biodiversity Conservation and Ecosystem Services. LatIA, 3, 87. https://doi.org/10.62486/latia202587 DOI: https://doi.org/10.62486/latia202587

Kayusi, F., & Chavula, P. (2025). Enhancing Wetland Restoration through Machine Learning-Based Decision Support Systems. LatIA, 3, 81. https://doi.org/10.62486/latia202581 DOI: https://doi.org/10.62486/latia202581

Stein, H. (2024). Policy and performance in African agriculture since independence: critical reflections. Handbook of African Economic Development. https://doi.org/10.4337/9781800885806.00022 DOI: https://doi.org/10.4337/9781800885806.00022

Mechiche-Alami, A., Yagoubi, J., & Nicholas, K. A. (2021). Agricultural land acquisitions unlikely to address the food security needs of African countries. World Development. https://doi.org/10.1016/j.worlddev.2020.105384 DOI: https://doi.org/10.1016/j.worlddev.2020.105384

Sadiq, F. K., Ya'u, S. L., Aliyu, J., & Maniyunda, L. M. (2023). Evaluation of land suitability for soybean production using GIS-based multi-criteria approach in Kudan Local Government area of Kaduna State Nigeria. Environmental and Sustainability Indicators, 20, 100297. https://doi.org/10.1016/j.indic.2023.100297 DOI: https://doi.org/10.1016/j.indic.2023.100297

Abdulai, A. R. (2022). … (GR) or neoliberal entrenchment in agri-food systems? Exploring narratives around digital agriculture (DA), food systems, and development in sub-sahara africa. The Journal of Development Studies. https://doi.org/10.1080/00220388.2022.2032673 DOI: https://doi.org/10.1080/00220388.2022.2032673

Choruma, D. J., Dirwai, T. L., Mutenje, M., Mustafa, M., Chimonyo, V. G. P., Jacobs-Mata, I., & Mabhaudhi, T. (2024). Digitalisation in agriculture: A scoping review of technologies in practice, challenges, and opportunities for smallholder farmers in sub-saharan africa. Journal of agriculture and food research, 101286. https://doi.org/10.1016/j.jafr.2024.101286 DOI: https://doi.org/10.1016/j.jafr.2024.101286

Johnson, M. E., Farris, J., Morgan, S., Bloem, J. R., Ajewole, K., & Beckman, J. (2022). Africa's Agricultural Trade: Recent Trends Leading up to the African Continental Free Trade Area. http://ageconsearch.umn.edu/

Ozor, N., Nwakaire, J., Nyambane, A., Muhatiah, W., & Nwobodo, C. (2025). Enhancing Africa’s agriculture and food systems through responsible and gender inclusive AI innovation: insights from AI4AFS network. Frontiers in Artificial Intelligence, 7, 1472236. https://doi.org/10.3389/frai.2024.1472236 DOI: https://doi.org/10.3389/frai.2024.1472236

Ahmad, A., Liew, A. X., Venturini, F., Kalogeras, A., Candiani, A., Di Benedetto, G., ... & Martos, V. (2024). AI can empower agriculture for global food security: challenges and prospects in developing nations. Frontiers in artificial intelligence, 7, 1328530. https://doi.org/10.3389/frai.2024.1328530 DOI: https://doi.org/10.3389/frai.2024.1328530

Chhetri, K. B. (2024). Applications of artificial intelligence and machine learning in food quality control and safety assessment. Food Engineering Reviews. https://doi.org/10.1007/s12393-023-09363-1 DOI: https://doi.org/10.1007/s12393-023-09363-1

Bidyalakshmi, T., Jyoti, B., Mansuri, S. M., Srivastava, A., Mohapatra, D., Kalnar, Y. B., ... & Indore, N. (2024). Application of Artificial Intelligence in Food Processing: Current Status and Future Prospects. Food Engineering Reviews, 1-28. https://doi.org/10.1007/s12393-024-09386-2 DOI: https://doi.org/10.1007/s12393-024-09386-2

Victor, B., Nibali, A., & He, Z. (2024). A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 10.1109/JSTARS.2024.3501216 DOI: https://doi.org/10.1109/JSTARS.2024.3501216

Cravero, A., Pardo, S., Galeas, P., López Fenner, J., & Caniupán, M. (2022). Data type and data sources for agricultural big data and machine learning. Sustainability, 14(23), 16131. https://doi.org/10.3390/su142316131 DOI: https://doi.org/10.3390/su142316131

Chavula P, Kayusi F, Agura Kayus B. Linking New Information Technologies to Agricultural Economics: The Role of Artificial Intelligence Integration. LatIA [Internet]. 2025 Apr. 16 [cited 2025 Apr. 30];3:326. Available from: https://latia.ageditor.uy/index.php/latia/article/view/326 DOI: https://doi.org/10.62486/latia2025326

Elbasi, E., Mostafa, N., AlArnaout, Z., Zreikat, A. I., Cina, E., Varghese, G., ... & Zaki, C. (2022). Artificial intelligence technology in the agricultural sector: A systematic literature review. IEEE access, 11, 171-202. https://doi.org/10.1109/ACCESS.2022.3232485 DOI: https://doi.org/10.1109/ACCESS.2022.3232485

Wang, M. & Li, X. (2024). Application of artificial intelligence techniques in meat processing: A review. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.14590 DOI: https://doi.org/10.1111/jfpe.14590

Sarker, T., Deen, R. A., Ghosh, D., Mia, N., Rahman, M. M., & Hashem, M. A. (2024). AI driven approach and NIRS: A review on meat quality and safety. Meat Research, 4(6). https://doi.org/10.55002/mr.4.6.105 DOI: https://doi.org/10.55002/mr.4.6.105

Qiao, J., Zhang, M., Wang, D., Mujumdar, A. S., & Chu, C. (2024). AI‐based R&D for frozen and thawed meat: Research progress and future prospects. Comprehensive Reviews in Food Science and Food Safety, 23(5), e70016. https://doi.org/10.1111/1541-4337.70016 DOI: https://doi.org/10.1111/1541-4337.70016

Tzachor, A., Devare, M., King, B., Avin, S., & Ó hÉigeartaigh, S. (2022). Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence, 4(2), 104-109. https://doi.org/10.1038/s42256-022-00440-4 DOI: https://doi.org/10.1038/s42256-022-00440-4

Abrar-Ul-Haq, M., Sankar, J. P., Akram, F., & Malik, H. A. M. (2024, January). Harvesting prosperity: AI-powered solutions for household poverty reduction through smart agriculture. In 2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC) (pp. 1-5). IEEE. https://doi.org/10.1109/KHI-HTC60760.2024.10482025 DOI: https://doi.org/10.1109/KHI-HTC60760.2024.10482025

Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from …. Sustainability. https://doi.org/10.3390/su13115788 DOI: https://doi.org/10.3390/su13115788

Chavula P, Kayusi F, Agura Kayus B. Application of Artificial Intelligence in Tree Care in Sub-Saharan Africa. LatIA [Internet]. 2025 Apr. 16 [cited 2025 Apr. 30];3:325. Available from: https://latia.ageditor.uy/index.php/latia/article/view/325 DOI: https://doi.org/10.62486/latia202585

Korinek, A. & Stiglitz, J. E. (2021). Artificial intelligence, globalization, and strategies for economic development. http://www.nber.org/papers/w28453 DOI: https://doi.org/10.3386/w28453

Mannuru, N. R., Shahriar, S., Teel, Z. A., Wang, T., Lund, B. D., Tijani, S., ... & Vaidya, P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development, 02666669231200628. https://www.researchgate.net/publication/373934747_Artificial_intelligence_in_developing_countries_The_impact_of_generative_artificial_intelligence_AI_technologies_for_development?enrichId=rgreq-c7f7ed939f7acd269b191e082e4949b9-XXX&enrichSource=Y292ZXJQYWdlOzM3MzkzNDc0NztBUzoxMTQzMTI4MTE4ODkxODAxOUAxNjk0ODE1OTY2Nzg5&el=1_x_2&_esc=publicationCoverPdf

Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in the Agriculture Sector. Advanced Agrochem. https://doi.org/10.1016/j.aac.2022.10.001 DOI: https://doi.org/10.1016/j.aac.2022.10.001

Downloads

Published

2025-05-08

Issue

Section

Review

How to Cite

1.
Chavula P, Kayusi F. Challenges in Sub-Saharan Africa’s Food Systems and the Potential Role of AI. LatIA [Internet]. 2025 May 8 [cited 2025 Jun. 17];3:318. Available from: https://latia.ageditor.uy/index.php/latia/article/view/318